首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   32篇
  2023年   1篇
  2021年   11篇
  2020年   3篇
  2019年   3篇
  2018年   8篇
  2017年   8篇
  2016年   16篇
  2015年   20篇
  2014年   14篇
  2013年   20篇
  2012年   29篇
  2011年   25篇
  2010年   18篇
  2009年   11篇
  2008年   26篇
  2007年   17篇
  2006年   21篇
  2005年   15篇
  2004年   11篇
  2003年   15篇
  2002年   16篇
  2001年   9篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1971年   3篇
排序方式: 共有359条查询结果,搜索用时 5 毫秒
1.
The nitrodiphenyl ether herbicide 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-o-(acetic acid, methyl ester) (DPEI) induces light- and O2-dependent lipid peroxidation and chlorophyll (Chl) bleaching in the green alga Scenedesmus obliquus. Under conditions of O2-limitation, these effects are diminished by prometyne and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), both inhibitors of photosynthetic electron transport. Mutants in which photosynthetic electron transport is blocked are also resistant to DPEI under conditions of O2-limitation. Light- and O2-dependent lipid peroxidation and Chl bleaching are also induced by 5-[2-chloro-4-(trifluoromethyl)phenoxy]-3-methoxyphthalide (DPEII), a diphenyl ether whose redox properties preclude reduction by photosystem I. However, these effects of DPEII are also inhibited by DCMU. Under conditions of high aeration, DCMU does not protect Scenedesmus cells from Chl bleaching induced by DPEI, but does protect against paraquat. DPEI, but not paraquat, induces tetrapyrrole formation in treated cells in the dark. This is also observed in a mutant lacking photosystem I but is suppressed under conditions likely to lead to O2 limitation. Our results indicate that, in contrast to paraquat, the role of photosynthetic electron transport in diphenyl ether toxicity in Scenedesmus is not to reduce the herbicide to a radical species which initiates lipid peroxidation. Its role is probably to maintain a sufficiently high O2 concentration, through water-splitting, in the algal suspension.  相似文献   
2.
A range of heteropentalene and bipyridinium compounds have been tested as catalysts of electron transfer to oxygen from spinach ferredoxin-NADP+ oxidoreductase reduced by NADPH. For a particular class of compound, the rate of oxygen reduction increased with increasing midpoint potential of the compound under conditions in which reduction of the compound was rate-limiting. Compounds with similar midpoint potentials from different structural classes showed marked differences in rate, attributed to specificity in the interaction with ferredoxin-NADP+ oxidoreductase.  相似文献   
3.
The localization of immunoreactive angiotensin I-converting enzyme (ACE) has been investigated at the optical and ultrastructural level with anti-human ACE antibodies in the human kidney and small intestine. In both tissues ACE was found in blood vessels and in extravascular situation in the absorptive epithelial cells of intestinal mucosa and renal proximal tubules. Ultrastructural immunohistochemistry showed that in intestinal and renal proximal tubular cells ACE was prominent in microvilli and brush borders. In the kidney ACE was also present on the basolateral part of the plasmalemmal membrane, where it may contribute to the regulation of angiotensin II-dependent absorption processes. Intracellular positivities were also observed inside the renal vascular endothelial and proximal tubular cell in endoplasmic reticulum and nuclear envelope reflecting the synthesis and the cellular processing of ACE. The intestinal microvascular endothelium was strongly labeled suggesting that the mesenteric circulation is an important site for the production of angiotensin II. Vascular endothelial ACE was also detected in the peritubular but not glomerular capillaries of the kidney.  相似文献   
4.
Summary The localization of immunoreactive angiotensin I-converting enzyme (ACE) has been investigated at the optical and ultrastructural level with anti-human ACE antibodies in the human kidney and small intestine. In both tissues ACE was found in blood vessels and in extravascular situation in the absorptive epithelial cells of intestinal mucosa and renal proximal tubules. Ultrastructural immunohistochemistry showed that in intestinal and renal proximal tubular cells ACE was prominent in microvilli and brush borders. In the kidney ACE was also present on the basolateral part of the plasmalemmal membrane, where it may contribute to the regulation of angiotensin II-dependant absorption processes. Intracellular positivities were also observed inside the renal vascular endothelial and proximal tubular cell in endoplasmic reticulum and nuclear envelope reflecting the synthesis and the cellular processing of ACE. The intestinal microvascular endothelium was strongly labeled suggesting that the mesenteric circulation is an important site for the production of angiotensin II. Vascular endothelial ACE was also detected in the peritubular but not glomerular capillaries of the kidney.  相似文献   
5.
6.
7.
We have designed a new method for the recovery of T-DNA flanking sequences from T-DNA-tagged lines ofArabidopsis thaliana. Since most transformation vectors in use contain a plant-selectable marker for kanamycin resistance, we can use the 3′ part of thenptII coding region from the T-DNA to complement the bacterial 5′ region of thenptII gene from Tn5 to reconstruct a functional kanamycin-resistance gene inEscherichia coli. We have constructed a vector that contains the 5′ part of thenptII gene from Tn5 up to the uniquePst I site. By cloning total DNA from transformed lines in this vector, we were able to select directly for clones containing a T-DNA fragment, which reconstitutes a functional kanamycin gene, and a fragment of arabidopsis genomic DNA adjacent to the insertion. Flanking sequences up to 4 kb were rescued by this system.  相似文献   
8.
9.
10.
The enantiomers (+) and (-)-2,2-difluorocitrate have been synthesized. Both are good inhibitors of ATP-citrate lyase, showing competitive inhibition against citrate, with Kis = 0.7 microM for (+)-2,2-difluorocitrate and 3.2 microM for (-)-2,2-difluorocitrate. The inhibition patterns with either ATP or CoA as the varied substrate were uncompetitive and mixed, respectively, but with much weaker inhibition constants. Neither isomer undergoes carbon-carbon bond cleavage as a substrate and there is no evidence of irreversible time-dependent inactivation. When ATP-citrate lyase is incubated with CoA and difluorocitrate, the maximal intrinsic ATPase rate is 10% of the citrate-induced rate for the (+)-enantiomer and 2% for the (-)-enantiomer. 19F-NMR studies confirm that only the (+)-enantiomer is chemically processed. The effects of the difluorocitrate enantiomers on the reaction catalysed by aconitase were examined. (-)-2,2-Difluorocitrate is a competitive inhibitor against citrate (Kis = 1.5 microM), whereas the (+)-enantiomer is a relatively poor mixed inhibitor (Ki greater than 300 microM). The (-)-enantiomer irreversibly inactivates aconitase at 1.1 min-1.mM-1 at 25 degrees C and pH 7.4, whereas no irreversible inhibition is seen with the (+)-enantiomer. Therefore, it would be expected that the (+)-enantiomer would slow the rate of acetyl-CoA synthesis in vivo, without inhibiting the citric acid cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号