首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   14篇
  2019年   5篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   5篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
We examined the role of the orphan nuclear hormone receptor CoupTFI in mediating cortical development downstream of meningeal retinoic acid signaling. CoupTFI is a regulator of cortical development known to collaborate with retinoic acid (RA) signaling in other systems. To examine the interaction of CoupTFI and cortical RA signaling we utilized Foxc1-mutant mice in which defects in meningeal development lead to alterations in cortical development due to a reduction of RA signaling. By analyzing CoupTFI−/−;Foxc1H/L double mutant mice we provide evidence that CoupTFI is required for RA rescue of the ventricular zone and the neurogenic phenotypes in Foxc1-mutants. We also found that overexpression of CoupTFI in Foxc1-mutants is sufficient to rescue the Foxc1-mutant cortical phenotype in part. These results suggest that CoupTFI collaborates with RA signaling to regulate both cortical ventricular zone progenitor cell behavior and cortical neurogenesis.  相似文献   
2.
The modes of action of the five major endo-(1----4)-beta-D-glucanases (I, II, III, IV and V) purified from Penicillium pinophilum cellulase were compared by h.p.l.c. analysis, with normal, 1-3H-labelled and reduced cello-oligosaccharides and 4-methylumbelliferyl glycosides as substrates. Significant differences were observed in the preferred site of cleavage even when substrates with the same number of glycosidic bonds were compared. Thus, although endoglucanase I was unable to attack normal cello-oligosaccharides shorter than degree of polymerization 6, it hydrolysed reduced cellopentaose to yield cellotriose and cellobi-itol, and it produced cellotriose and 4-methylumbelliferyl glucoside from 4-methylumbelliferyl cellotetraoside. Endoglucanase IV hydrolysed [1-3H]cellotriose but did not attack either cellotri-itol or 4-methylumbelliferyl cellobioside. These and other anomalous results indicated clearly that modification of the reducing glycosyl residue on the cello-oligosaccharides induces in an apparent change in the mode of action of the endoglucanases. It is suggested that, although cello-oligosaccharide derivatives are useful for differentiating and classifying endoglucanases, conclusions on the mechanism of cellulase action resulting from these measurements should be treated cautiously. Unequivocal information on the mode of endoglucanase action on cello-oligosaccharides was obtained with radiolabelled cello-oligosaccharides of degree of polymerization 3 to 5. Indications that transglycosylation was a property of the endoglucanases were particularly evident with the 4-methylumbelliferyl cello-oligosaccharides. Turnover numbers for hydrolysis of the umbelliferyl cello-oligosaccharides were calculated, and these, along with the other analytical data collected on the products of hydrolysis of the normal, reduced and radiolabelled cello-oligosaccharides, suggested that the various endoglucanases had different roles to play in the overall hydrolysis of cellulose to sugars small enough to be transported through the cell membrane.  相似文献   
3.
Recombinant bovine interferon-alpha(I)1 (rBolFN-alpha) may be useful for enhancing fertility in sheep because it has extensive sequence homology with ovine trophoblast protein-1. To test the effectiveness of rBolFN-alpha, several experiments were performed in which bred females were given intramuscular injections of rBolFN-alpha around the time of maintenance of the corpus luteum. Treatment with rBolFN-alpha enhanced the fertility of ewes that were bred via natural service or embryo transfer of whole or demi-embryos. Interferon treatment was successful in enhancing lambing rate if injections were given twice daily from Days 11 to 18, 12 to 14, 12 to 15 or 12 to 16. Overall, the lambing rate for ewes bred via natural service was 94/126 (74.6%) for control ewes and 101/126 (80.2%) for rBolFN-alpha treated ewes. Litter size was not affected by treatment. Interferon treatment was not successful in increasing the lambing rate if given as a single injection on Day 12 or as a series of once-daily injections from Days 11 to 16. These results demonstrate that rBolFN-alpha can increase the lambing rate in ewes.  相似文献   
4.
Two chloroplast envelope proteins from spinach (Spinacia oleracea L.) exhibiting relative molecular masses (Mrs) of 26 and 14 kDa are apparently phosphorylated by a unique Ca2+-dependent serine protein kinase. The activity of this enzyme shows the same sensitivity towards pH, Ca2+, Mg2+, H7 [1-(5-isoquinolinesulphonyl)-2-methylpiperazine] and ATP concentrations (Siegenthaler and Bovet 1993, Planta 190, 231–240). Autoradiographic analyses following two-dimensional-gel electrophoresis (isoelectric focusing and SDS-PAGE) associated with Western blotting experiments indicate that these two phosphoproteins appeared to be pools of the light-harvesting complex of photosystem II (LHCII) and of the ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) small subunit, respectively. Immunoprecipitation of envelope-phosphorylated proteins, using immunoglobulins (IgG) directed to the apoprotein of LHCII and to the holoenzyme of Rubisco confirmed that LHCII and the Rubisco small subunit effectively incorporated 32P from (-32P)ATP in isolated envelope membranes. We propose that, in agreement with the fact that protein import is driven by ATP, the phosphorylation of LHCII and the Rubisco small subunit could take place after the processing of precursor proteins and could be an obligatory step for their internalization into chloroplasts.Abbreviations 2D two dimensional - IEF isoelectric focusing - IgG immunoglobulin G - LHCII light-harvesting chlorophyll a/b proteins of PSII - LHCII A apoprotein a of LHCII - LHCIIB apoprotein b of LHCII - LS Rubisco large subunit - Mops (3-[N-morpholino]propanesulfonic acid) - Mr relative molecular mass - PI isoelectric point - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - SS Rubisco small subunit The authors are grateful to Delphine Herrmann and Xavier Denys for their technical assistance. They also greatly thank Prof. R. J. Ellis and Dr. L. Barnett (Warwick University, UK) and Dr. P. Schürmann (University of Neuchâtel, Switzerland) for providing them with antibodies directed to the pea and spinach Rubisco holoenzymes and Dr. M. Spangfort (Lund University, Sweden) for his gift of the antibody directed to the pea LHCII apoprotein. This study was supported by the Swiss National Science Foundation. This work was part of a doctoral program carried out by L.B. in the Laboratoire de Physiologie végétale, Université de Neuchâtel, Switzerland.  相似文献   
5.
A procedure was developed to purify simultaneously peroxisomes and mitochondria from spinach (Spinacia oleracea L.) leaf under isoosmotic and low viscosity conditions. This method involved differential centrifugation and density gradient centrifugation on four layers of Percoll. Chlorophyll-free preparations of highly intact and active organelles were obtained and cross-contamination was negligible. Both organelles were stable for several hours, even if they remained in Percoll. Purified mitochondria were able to carry out the oxidation of different substrates with excellent respiratory control and ADP:O ratios. The method described in the present work was also suitable to purify mitochondria and peroxisomes from potato (Solanum tuberosum L.) tubers.  相似文献   
6.
Cross-linking between protein components of whole spinach (Spinacia oleracea var. Nobel) thylakoids and of photosystem I- and II-enriched thylakoid fractions has been produced by reaction with the bifunctional imidoester dimethyl-3,3′-dithiobispropionimidate dihydrochloride as well as by the oxidation of intrinsic sulfydryl groups with an orthophenanthrolinecupric ion complex. The mixture of membrane proteins and their cross-linked products has been analyzed by two-dimensional sodium dodecyl sulfate electrophoresis, with a reductive cleavage step of the cross-linkages before the second dimension. Cross-linked aggregates up to a molecular weight of about 130 kilodaltons (kD) were analyzed, and it was inferred that the polypeptides appearing together in the same aggregates were neighbors within the membrane.

In thylakoids as well as in isolated photosystem fractions, oligomers were formed by cross-linking polypeptides of the 60 to 90 kD range, among them the polypeptides of the chlorophyll-protein complex I. Polypeptides of 46, 19, and 12 kD were cross-linked to these complexes. Polypeptides of 25 and 22 kD, which are related to the chlorophyll-protein complex II, were cross-linked in thylakoids as well as in photosystem II fractions, suggesting that in the membrane these molecules are close together. In photosystem II fractions an oligomer having a molecular weight of about 60 kD was formed by cross-linking several polypeptides of different molecular weights: 40, 25, and 22 kD.

Our cross-linking experiments show that protein interactions in the thylakoid membrane occurred mainly among the polypeptides of the two chlorophyll-protein complexes, thus suggesting an oligomeric nature of these apoproteins.

  相似文献   
7.
Formation of the vasculature is an essential developmental process, delivering oxygen and nutrients to support cellular processes needed for tissue growth and maturation. Retinoic acid (RA) and its downstream signaling pathway is vital for normal pre‐ and post‐natal development, playing key roles in the specification and formation of many organs and tissues. Here, we review the role of RA in blood and lymph vascular development, beginning with embryonic yolk sac vasculogenesis and remodeling and discussing RA's organ‐specific roles in angiogenesis and vessel maturation. In particular, we highlight the multi‐faceted role of RA signaling in CNS vascular development and acquisition of blood–brain barrier properties.  相似文献   
8.
The establishment of neuronal circuits depends on the guidance of axons both along and in between axonal populations of different identity; however, the molecular principles controlling axon–axon interactions in vivo remain largely elusive. We demonstrate that the Drosophila melanogaster L1CAM homologue Neuroglian mediates adhesion between functionally distinct mushroom body axon populations to enforce and control appropriate projections into distinct axonal layers and lobes essential for olfactory learning and memory. We addressed the regulatory mechanisms controlling homophilic Neuroglian-mediated cell adhesion by analyzing targeted mutations of extra- and intracellular Neuroglian domains in combination with cell type–specific rescue assays in vivo. We demonstrate independent and cooperative domain requirements: intercalating growth depends on homophilic adhesion mediated by extracellular Ig domains. For functional cluster formation, intracellular Ankyrin2 association is sufficient on one side of the trans-axonal complex whereas Moesin association is likely required simultaneously in both interacting axonal populations. Together, our results provide novel mechanistic insights into cell adhesion molecule–mediated axon–axon interactions that enable precise assembly of complex neuronal circuits.  相似文献   
9.
The corpus callosum is the most prominent commissural connection between the cortical hemispheres, and numerous neurodevelopmental disorders are associated with callosal agenesis. By using mice either with meningeal overgrowth or selective loss of meninges, we have identified a cascade of morphogenic signals initiated by the meninges that regulates corpus callosum development. The meninges produce BMP7, an inhibitor of callosal axon outgrowth. This activity is overcome by the induction of expression of Wnt3 by the callosal pathfinding neurons, which antagonize the inhibitory effects of BMP7. Wnt3 expression in the cingulate callosal pathfinding axons is developmentally regulated by another BMP family member, GDF5, which is produced by the adjacent Cajal-Retzius neurons and turns on before outgrowth of the callosal axons. The effects of GDF5 are in turn under the control of a soluble GDF5 inhibitor, Dan, made by the meninges. Thus, the meninges and medial neocortex use a cascade of signals to regulate corpus callosum development.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号