首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   14篇
  2023年   2篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   7篇
  2013年   4篇
  2012年   11篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2008年   4篇
  2007年   15篇
  2006年   7篇
  2005年   14篇
  2004年   4篇
  2003年   3篇
  2002年   6篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有136条查询结果,搜索用时 281 毫秒
1.
2.
We have studied the hydrolysis of guanosine 5-phospho-2-methylimidazolide, 2-MeImpG, in aqueous buffered solutions of various pH's at 75°C and 37°C. At 75°C and pH1.0, two kinetic processes were observed spectrophotometrically: the first and more rapid one is attributed to the hydrolysis of the phosphoimidazolide P-N bond; the second and much slower one, to the cleavage of the glycosidic bond. At 37°C, pH 2.0, the spectrophotometrically determined rate constant of P–N bond hydrolysis was confirmed by using high pressure liquid chromatography, HPLC. With the latter technique it was possible to separate reactants and products and also to extend the pH-rate profile into the neutral region where rates are slower and, therefore, difficult to measure spectrophotometrically. The pH-rate profiles at both temperatures exhibit similar behavior. At pH<2 the pseudo-first-order rate constant increases with decreasing pH; in the region 27. These data are consistent with a reactivity order zwitterion>anion for P–N bond hydrolysis. It is noteworthy that P–N bond hydrolysis in phosphoimidazolides is very slow compared to other phosphoramidates. This may be one of the reasons why this compound showed extraordinary ability in forming long oligomers under template-directed conditions.  相似文献   
3.
Summary Selected imidazolide-activated nucleotides have been subjected to hydrolysis under conditions similar to those that favor their template-directed oligomerization. Rate constants of hydrolysis of the P–N bond in guanosine 5-monophosphate 2-methylimidazolide (2-MeImpG) and in guanosine 5-monophosphate imidazolide (ImpG), kh, have been determined in the presence/absence of magnesium ion as a function of temperature and polycytidylate [poly(C)] concentration. Using the rate constant of hydrolysis of 2-MeImpG and the rate constant of elongation, i.e., the reaction of an oligoguanylate with 2-MeImpG in the presence of poly(C) acting as template, the limiting concentration of 2-MeImpG necessary for oligonucleotide elongation to compete with hydrolysis can be calculated. The limiting concentration is defined as the initial concentration of monomer that results in its equal consumption by hydrolysis and by elongation. These limiting concentrations of 2-MeImpG are found to be 1.7 mM at 37°C and 0.36 mM at 1°C. Boundary conditions in the form of limiting concentration of activated nucleotide may be used to evaluate a prebiotic model for chemical synthesis of biopolymers. For instance, the limiting concentration of monomer can be used as a basis of comparison among catalytic, but nonenzymatic, RNA-type systems.We also determined the rate constant of dimerization of 2-MeImpG, k2=0.45±0.06 M–1 h–1 in the absence of poly(C), and 0.45±0.06k20.97±0.13 M–1 h–1 in its presence at 37°C and pH 7.95. This dimerization, as well as the trimerization of 2-MeImpG, which represent the first steps in the oligomerization reaction, are markedly slower than the elongation of longer oligoguanylates, (pG) n n>6. This means that in the presence of low concentrations of 2-MeImpG (1.7 mM) the system directs the elongation of longer oligomers more efficiently than the formation of short oligomers such as dimers and trimers. These results will be discussed as a possible example of chemical selection in template-directed reactions of nucleotides.  相似文献   
4.
The terrestrial water cycle links the soil and atmosphere moisture reservoirs through four fluxes: precipitation, evaporation, runoff, and atmospheric moisture convergence (net import of water vapor to balance runoff). Each of these processes is essential for sustaining human and ecosystem well-being. Predicting how the water cycle responds to changes in vegetation cover remains a challenge. Recently, changes in plant transpiration across the Amazon basin were shown to be associated disproportionately with changes in rainfall, suggesting that even small declines in transpiration (e.g., from deforestation) would lead to much larger declines in rainfall. Here, constraining these findings by the law of mass conservation, we show that in a sufficiently wet atmosphere, forest transpiration can control atmospheric moisture convergence such that increased transpiration enhances atmospheric moisture import and results in water yield. Conversely, in a sufficiently dry atmosphere increased transpiration reduces atmospheric moisture convergence and water yield. This previously unrecognized dichotomy can explain the otherwise mixed observations of how water yield responds to re-greening, as we illustrate with examples from China's Loess Plateau. Our analysis indicates that any additional precipitation recycling due to additional vegetation increases precipitation but decreases local water yield and steady-state runoff. Therefore, in the drier regions/periods and early stages of ecological restoration, the role of vegetation can be confined to precipitation recycling, while once a wetter stage is achieved, additional vegetation enhances atmospheric moisture convergence and water yield. Recent analyses indicate that the latter regime dominates the global response of the terrestrial water cycle to re-greening. Evaluating the transition between regimes, and recognizing the potential of vegetation for enhancing moisture convergence, are crucial for characterizing the consequences of deforestation as well as for motivating and guiding ecological restoration.  相似文献   
5.
6.
7.
8.
Obtaining accurate kinetics and steady-state binding constants for biomolecular interactions normally requires pure and homogeneous protein preparations. Furthermore, in many cases, one of the ligands must be labeled. Over the past decade, several technologies have been introduced that allow for the measurement of kinetics constants for multiple different interactions in parallel. One such technology is bio-layer interferometry (BLI), which has been used to develop systems that can measure up to 96 biomolecular interactions simultaneously. However, despite the ever-increasing throughput of the tools available for measuring protein–protein interactions, the preparation of pure protein still remains a bottleneck in the process of producing high-quality kinetics data. Here, we show that high-quality binding data can be obtained using soluble lysate fractions containing protein that has been biotinylated in vivo using BirA and then applied to BLI sensors without further purification. Furthermore, we show that BirA ligase does not necessarily need to be co-overexpressed with the protein of interest for biotinylation of the biotin acceptor peptide to occur, suggesting that the activity of endogenous BirA in Escherichia coli is sufficient for producing enough biotinylated protein for a binding experiment.  相似文献   
9.
10.
Noncompaction of the ventricular myocardium (NVM) is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the alpha- and beta-myosin heavy chain, respectively) were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T). In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein's anomaly, EA) and atrial septal defect (ASD). A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号