首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   17篇
  2023年   2篇
  2022年   2篇
  2021年   7篇
  2020年   7篇
  2019年   4篇
  2018年   7篇
  2017年   5篇
  2016年   3篇
  2015年   16篇
  2014年   14篇
  2013年   28篇
  2012年   17篇
  2011年   26篇
  2010年   15篇
  2009年   15篇
  2008年   19篇
  2007年   23篇
  2006年   16篇
  2005年   17篇
  2004年   9篇
  2003年   16篇
  2002年   8篇
  2001年   13篇
  2000年   11篇
  1999年   5篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1980年   1篇
  1976年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有326条查询结果,搜索用时 31 毫秒
1.
Informed consent to medical intervention is fundamental in both ethics and law. But in practice it is often not taken seriously in developing countries. This paper provides an appraisal of informed consent practices in Bangladesh. Following a review of the ethical and legal principles of informed consent, it assesses the degree to which doctors adhere to it in Bangladesh. Based on findings of non-compliance, it then investigates the reasons for such non-compliance through an appraisal of informed consent practices in Bangladesh and provides recommendations aimed at improving such practices. The significance of this paper lies in unveiling the interdependence between the ethical and legal traits of informed consent and their ramifications on strengthening the patient-oriented approach of duty to care.  相似文献   
2.
We have recently found that Moloney murine leukemia virus assembles within cytoplasmic vacuoles of chronically infected NIH/3T3 cells rather than at their surface (submitted for publication). In the present study we found that if these cells were treated with interferon (IF) for 24 to 48 h the intracellular virus particles accumulated at a two- to threefold-higher level than that observed in untreated cells. Nevertheless, despite this accumulation, no difference between IF-treated and untreated cells was observed in the amount of the total cytoplasmic viral RNA or in its 35S or 21S species. When cellular virions were sedimented from the cytoplasmic fraction, a markedly higher amount of viral RNA was detected in the viral pellet of IF-treated cells than was detected in untreated cells, whereas the amount of viral RNA left in the virus-free cytoplasm of IF-treated cells was much lower than that in the untreated cells. Furthermore, the amount of the cytoplasmic polyriboadenylic acid-containing viral RNA was also remarkably higher in the IF-treated cells. Viral polyribosomes appeared to be fully functional in IF-treated cells, since no effect of IF on viral protein synthesis could be detected. Analysis of the nuclear viral RNA showed no difference between IF-treated and untreated cells after 24 h of IF treatment. Both contained a comparable amount of 35S viral RNA. However, at 48 h a significant accumulation of viral RNA was observed in the nucleus of the IF-treated cells as compared with the untreated cells, although in both cases only 35S species were evident. This accumulation appeared to activate a degradation process which destroyed nuclear viral RNA, since a dramatic shift toward smaller-sized molecules of viral RNA and a remarkable reduction in its amount were observed after 72 h of IF treatment.  相似文献   
3.
4.
5.
6.
Most human tissues express low levels of telomerase and undergo telomere shortening and eventual senescence; the resulting limitation on tissue renewal can lead to a wide range of age‐dependent pathophysiologies. Increasing evidence indicates that the decline in cell division capacity in cells that lack telomerase can be influenced by numerous genetic factors. Here, we use telomerase‐defective strains of budding yeast to probe whether replicative senescence can be attenuated or accelerated by defects in factors previously implicated in handling of DNA termini. We show that the MRX (Mre11‐Rad50‐Xrs2) complex, as well as negative (Rif2) and positive (Tel1) regulators of this complex, comprise a single pathway that promotes replicative senescence, in a manner that recapitulates how these proteins modulate resection of DNA ends. In contrast, the Rad51 recombinase, which acts downstream of the MRX complex in double‐strand break (DSB) repair, regulates replicative senescence through a separate pathway operating in opposition to the MRX‐Tel1‐Rif2 pathway. Moreover, defects in several additional proteins implicated in DSB repair (Rif1 and Sae2) confer only transient effects during early or late stages of replicative senescence, respectively, further suggesting that a simple analogy between DSBs and eroding telomeres is incomplete. These results indicate that the replicative capacity of telomerase‐defective yeast is controlled by a network comprised of multiple pathways. It is likely that telomere shortening in telomerase‐depleted human cells is similarly under a complex pattern of genetic control; mechanistic understanding of this process should provide crucial information regarding how human tissues age in response to telomere erosion.  相似文献   
7.
Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stability, optimal antigen binding, and normal Fc function. Recently, human IgG1λ has been suggested to exhibit significantly greater susceptibility to reduction of the inter Lc-Hc disulfide bond relative to the same disulfide bond in human IgG1κ. To understand the molecular basis for this observed difference in stability, the sequence and structure of human IgG1λ and human IgG1κ were compared. Based on this Lc comparison, three single mutations were made in the λ Lc proximal to the cysteine residue, which forms a disulfide bond with the Hc. We determined that deletion of S214 (dS) improved resistance of the association between Lc and Hc to thermal stress. In addition, deletion of this terminal serine from the Lc of IgG1λ provided further benefit, including an increase in stability at elevated pH, increased yield from transient transfection, and improved in vitro antibody dependent cell-mediated cytotoxicity (ADCC). These observations support the conclusion that the presence of the terminal serine of the λ Lc creates a weaker inter-chain disulfide bond between the Lc and Hc, leading to slightly reduced stability and a potential compromise in IgG1λ function. Our data from a human IgG1λ provide a basis for further investigation of the effects of deleting terminal serine from λLc on the stability and function of other human IgG1λ antibodies.  相似文献   
8.
Panallergens show structural similarities, and they are responsible for many cross-reactions between pollen and plant food sources. The aim of the present study was to investigate IgE reactivity to peanut allergen components in children with birch pollen allergy. Patients experienced symptoms of allergic asthma, allergic rhinitis, and urticaria, and they underwent a complete diagnostic evaluation, including skin prick test (SPT), specific IgE (sIgE) to birch pollen allergen (t3), peanut allergen (f13). In addition, measurement of sIgE to the major birch allergen components, Betula verrucosa (Bet v1, Bet v2), and to peanut allergen components, Arachis hypogaea (genuine componens: Ara h1, Ara h2, Ara h3, and cross-reactive Ara h8) was performed, by using a microarray technique (component resolved diagnosis, CRD). SPT to birch extract was positive in all children, and SPT to peanut extract was positive in 51 % of them. sIgE to both allergens was increased in 39 % of children, 55 % of them had increased sIgE (t3), and one child had increased sIgE (f13). CRD results confirmed that some children were sensitized to Bet v1 only, and some children to genuine Ara h only. Bet v1/Ara h8 cross-reactivity was found in 16 % of children. Results of the present study reveal that SPT, sIgE, and CRD may detect sensitization and co-sensitization with birch and peanut allergens/allergen components, and CRD may help to differentiate sensitization to genuine peanut components from sensitization to peanut cross-reactive component in birch-sensitive children. Diagnostic approach has to be individualized for each patient.  相似文献   
9.
A critical role for mitochondrial dysfunction has been proposed in the pathogenesis of Down's syndrome (DS), a human multifactorial disorder caused by trisomy of chromosome 21, associated with mental retardation and early neurodegeneration. Previous studies from our group demonstrated in DS cells a decreased capacity of the mitochondrial ATP production system and overproduction of reactive oxygen species (ROS) in mitochondria. In this study we have tested the potential of epigallocatechin-3-gallate (EGCG) – a natural polyphenol component of green tea – to counteract the mitochondrial energy deficit found in DS cells. We found that EGCG, incubated with cultured lymphoblasts and fibroblasts from DS subjects, rescued mitochondrial complex I and ATP synthase catalytic activities, restored oxidative phosphorylation efficiency and counteracted oxidative stress. These effects were associated with EGCG-induced promotion of PKA activity, related to increased cellular levels of cAMP and PKA-dependent phosphorylation of the NDUFS4 subunit of complex I. In addition, EGCG strongly promoted mitochondrial biogenesis in DS cells, as associated with increase in Sirt1-dependent PGC-1α deacetylation, NRF-1 and T-FAM protein levels and mitochondrial DNA content.In conclusion, this study shows that EGCG is a promoting effector of oxidative phosphorylation and mitochondrial biogenesis in DS cells, acting through modulation of the cAMP/PKA- and sirtuin-dependent pathways. EGCG treatment promises thus to be a therapeutic approach to counteract mitochondrial energy deficit and oxidative stress in DS.  相似文献   
10.
Increasing evidence reveals a large dependency of epithelial cancer cells on oxidative phosphorylation (OXPHOS) for energy production. In this study we tested the potential of epigallocatechin-3-gallate (EGCG), a natural polyphenol known to target mitochondria, in inducing OXPHOS impairment and cell energy deficit in human epitheliod (REN cells) and biphasic (MSTO-211H cells) malignant pleural mesothelioma (MMe), a rare but highly aggressive tumor with high unmet need for treatment. Due to EGCG instability that causes H2O2 formation in culture medium, the drug was added to MMe cells in the presence of exogenous superoxide dismutase and catalase, already proved to stabilize the EGCG molecule and prevent EGCG-dependent reactive oxygen species formation. We show that under these experimental conditions, EGCG causes the selective arrest of MMe cell growth with respect to normal mesothelial cells and the induction of mitochondria-mediated apoptosis, as revealed by early mitochondrial ultrastructure modification, swelling and cytochrome c release. We disclose a novel mechanism by which EGCG induces apoptosis through the impairment of mitochondrial respiratory chain complexes, particularly of complex I, II and ATP synthase. This induces a strong reduction in ATP production by OXPHOS, that is not adequately counterbalanced by glycolytic shift, resulting in cell energy deficit, cell cycle arrest and apoptosis. The EGCG-dependent negative modulation of mitochondrial energy metabolism, selective for cancer cells, gives an important input for the development of novel pharmacological strategies for MMe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号