首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  2023年   1篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
排序方式: 共有27条查询结果,搜索用时 187 毫秒
1.
A series of 4-aryl-5-(4-(methylsulfonyl)phenyl)-2-alkylthio and 2-alkylsulfonyl-1H-imidazole derivatives were synthesized. All compounds were tested in human blood assay to determine COX-1 and COX-2 inhibitory potency and selectivity. Among the synthesized compounds, 2-alkylthio series were more potent and selective than 2-sulfonylalkyl derivatives. In molecular modeling, interaction of 2-sulfonylalkyl moiety with Arg120 in COX-1 and an extra hydrogen bond with Tyr341 in COX-2 increased the residence time of ligands in the active site in 2-sulfonylalkyl and 2-alkylthio analogs, respectively.  相似文献   
2.
One of the most outstanding properties of TiO2 nanosheets is their lack of harmful effects on the public health and environment, which makes them an appropriate agent for medical applications such as drug delivery. Interaction of an RNA aptamer with (1 0 1), (1 0 0) and (1 1 0) surfaces of TiO2 anatase were investigated using the molecular dynamics simulation. The structural parameters including root-mean-square deviation and fluctuation, and the distance between the center-of-mass of RNA aptamer and the considered surfaces were discussed in detail. Besides, the effect of water between adsorbed aptamer and surface was investigated and analyzed by the help of dipole moment orientation, hydrogen bonds and density profile of these water molecules. Analysis of the structural parameters and interaction energies shows that the (1 1 0) surface is energetically more favorable for the adsorption of considered RNA aptamer than the (1 0 0) and (1 0 1) surfaces. Consequently, our results suggest a great potential of (1 1 0) surface of TiO2 as an efficient candidate for drug delivery applications.  相似文献   
3.
Globodera pallida is a parasitic root cyst nematode of potato, which causes reduction of crop yield and quality in infested fields. Field populations of G. pallida containing mixtures of pathotypes Pa2 and Pa3 (Pa2/3) are currently most relevant for potato cultivation in middle Europe. Genes for resistance to G. pallida have been introgressed into the cultivated potato gene pool from the wild, tuber bearing Solanum species S. spegazzinii and S. vernei. Selection of resistant genotypes in breeding programs is hampered by the fact that the phenotypic evaluation of resistance to G. pallida is time consuming, costly and often ambiguous. DNA-based markers diagnostic for resistance to G. pallida would facilitate the development of resistant varieties. A tetraploid F1 hybrid family SR-Gpa segregating for quantitative resistance to G.␣pallida was developed and evaluated for resistance to G. pallida population ‘Chavornay’. Two subpopulations of 30 highly resistant and 30 susceptible individuals were selected and genotyped for 96 single nucleotide polymorphism (SNP) markers tagging 12 genomic regions on 10 potato chromosomes. Seven SNPs were found significantly linked to the nematode resistance, which were all located within a resistance ‘hotspot’ on potato chromosome V. A haplotype model for these seven SNPs was deduced from the SNP patterns observed in the SR-Gpa family. A PCR assay ‘HC’ was developed, which specifically detected the SNP haplotype c that was linked with high levels of nematode resistance. The HC marker was only found in accessions of S.␣vernei. Screening with the HC marker 34 potato varieties resistant to G. pallida pathotypes Pa2 and/or Pa3 and 22 susceptible varieties demonstrated that the HC marker was highly diagnostic for presence of high levels of resistance to G. pallida pathotype Pa2/Pa3.Amirali Sattarzadeh and Ute Achenbach contributed equally to the work  相似文献   
4.
Recently many researchers have proposed a protective role for morphine against tumor growth and metastasis, especially through induction of apoptosis in tumoral cells. These findings may lead to underestimation of cytotoxic effects of opioid drugs which are usually expected only at high doses. The present study was conducted to clarify whether repeated morphine administration, which is commonly used for relief from chronic pain, would interfere with liver antioxidant defence and hepatocytes vitality. Morphine was injected repeatedly at doses that have been reported to relieve cancer pain and reduce tumor spread in mice (5 and 10 mg/kg/day for nine consecutive days). The changes in hepatic glutathione concentration, its synthesis pathway and enzymatic antioxidant defense revealed the pro-oxidant effects of chronic morphine treatment on the liver. None of these changes were observed in those mice that were co-treated with naltrexone (opioid antagonist) and same doses of morphine. However induction of liver conjugating enzymes following morphine treatment was not receptor mediated. Moreover, chronic morphine treatment induced hepatocytes apoptosis. Interestingly, the apoptotic changes were antagonized by co-administration of either naltrexone or thiol antioxidant. In conclusion, although hepatotoxic effects of morphine at high doses have been reported previously, our findings propose that repeated morphine administration even at lower doses would induce oxidative stress in the liver, which may contribute to induction of apoptosis in hepatocytes. Since many of the observed adverse effects were mediated by opioid receptors, our results suggest that other opioid analgesics should also be used more cautiously.  相似文献   
5.
Plastid number and morphology vary dramatically between cell types and at different developmental stages. Furthermore, in C4 plants such as maize, chloroplast ultrastructure and biochemical functions are specialized in mesophyll and bundle sheath cells, which differentiate acropetally from the proplastid form in the leaf base. To develop visible markers for maize plastids, we have created a series of stable transgenics expressing fluorescent proteins fused to either the maize ubiquitin promoter, the mesophyll‐specific phosphoenolpyruvate carboxylase (PepC) promoter, or the bundle sheath‐specific Rubisco small subunit 1 (RbcS) promoter. Multiple independent events were examined and revealed that maize codon‐optimized versions of YFP and GFP were particularly well expressed, and that expression was stably inherited. Plants carrying PepC promoter constructs exhibit YFP expression in mesophyll plastids and the RbcS promoter mediated expression in bundle sheath plastids. The PepC and RbcS promoter fusions also proved useful for identifying plastids in organs such as epidermis, silks, roots and trichomes. These tools will inform future plastid‐related studies of wild‐type and mutant maize plants and provide material from which different plastid types may be isolated.  相似文献   
6.
Stromules are thin projections from plastids that are generally longer and more abundant on non-green plastids than on chloroplasts. Occasionally stromules can be observed to connect two plastid bodies with one another. However, photobleaching of GFP-labeled plastids and stromules in 2000 demonstrated that plastids do not form a network like the endoplasmic reticulum, resulting in the proposal that stromules have major functions other than transfer of material from one plastid to another. The absence of a network was confirmed in 2012 with the use of a photoconvertible fluorescent protein, but the prior observations of movement of proteins between plastids were challenged. We review published evidence and provide new experiments that demonstrate trafficking of fluorescent protein between plastids as well as movement of proteins within stromules that emanate from a single plastid and discuss the possible function of stromules.Projections from chloroplasts have been reported sporadically in the literature for over a hundred years (reviewed in Gray et al., 2001; Kwok and Hanson, 2004a) and became established as genuine features of plastids when they were observed by the targeting of green fluorescent protein (GFP) to the stromal compartment (Köhler et al., 1997). This study showed that these projections sometimes appeared to connect discrete plastid bodies, and photobleaching experiments demonstrated flow of GFP from one plastid body to another. After GFP in one plastid body was bleached, fluorescence rapidly recovered as a result of flow from GFP from the unbleached plastids. By continuous bleaching of a stromule connecting two plastids, fluorescence was lost from both plastids. This led to the speculation that there could be an interplastid communication system (Köhler et al., 1997). In a follow-up study to test the degree of interplastid connectedness, the term “stromule” was coined to prevent confusion with other tubular structures in the cell (Köhler and Hanson, 2000). The existence of a stromule-based plastid network was ruled out by these experiments, but movement of protein through stromules was confirmed, and it was proposed that stromules might function to facilitate transport of substances in and out of the plastid by increasing surface area and by placing the plastid compartment in close proximity to other organelles or subcellular structures (Köhler and Hanson, 2000). A study by Schattat et al. (2012) confirmed the absence of a plastid network with the use of a photoconvertible fluorescent protein. These authors also describe photoconversion experiments that appear to contradict our prior work demonstrating flow of GFP between two plastid bodies connected by a stromule. Here, we confirm our prior fluorescence recovery after photobleaching (FRAP) results, showing that proteins can move through stromules between individual plastids, and we demonstrate that a red photoconverted protein can also move into a region where photoconversion has not occurred, provided that potentially damaging levels of light are not used during the photoconversion experiment. We review previous studies showing the lack of an interconnected plastid network and consider other functions for stromules, such as facilitating the transport of enzymes and metabolites to and from the plastid to the vicinity of other organelles or regions of the cell.  相似文献   
7.
8.
The actin cytoskeleton plays a role in mobility of many different organelles in plant cells, including chloroplasts, mitochondria, Golgi, and peroxisomes. While progress has been made in identifying the myosin motors involved in trafficking of various plant organelles, not all of the cargoes mobilized by different members of the myosin XI family have yet been identified. The involvement of myosins in chloroplast positioning and mitochondrial movement was demonstrated by expression of a virus-induced gene silencing (VIGS) construct in tobacco. When VIGS with two different conserved sequences from a myosin Xl motor was performed in plants with either GFP-labeled plastids or mitochondria, chloroplast positioning in the dark was abnormal, and mitochondrial movement ceased. Because these and prior obser- vations have implicated a role for myosins and the actin cytoskeleton in plastid and stromule movement, we searched for myosin tail domains that could associate with plastids and stromules. While a yellow fluorescent protein (YFP) fusion with the entire tail region of myosin XI-F was usually found only in the cytoplasm, we observed that an Arabidopsis or Nicotiana benthamiana YFP::myosin XI-F tail domain homologous to the yeast myo2p vacuole-binding domain associated with plastids and stromules after transient expression in N. benthamiana. Taken together, these observations implicate myosin motor proteins in dynamics of plastids and stromules.  相似文献   
9.
Fusobacterium nucleatum (Fn) is a Gram‐negative oral commensal, prevalent in various human diseases. It is unknown how this common commensal converts to a rampant pathogen. We report that Fn secretes an adhesin (FadA) with amyloid properties via a Fap2‐like autotransporter to enhance its virulence. The extracellular FadA binds Congo Red, Thioflavin‐T, and antibodies raised against human amyloid β42. Fn produces amyloid‐like FadA under stress and disease conditions, but not in healthy sites or tissues. It functions as a scaffold for biofilm formation, confers acid tolerance, and mediates Fn binding to host cells. Furthermore, amyloid‐like FadA induces periodontal bone loss and promotes CRC progression in mice, with virulence attenuated by amyloid‐binding compounds. The uncleaved signal peptide of FadA is required for the formation and stability of mature amyloid FadA fibrils. We propose a model in which hydrophobic signal peptides serve as “hooks” to crosslink neighboring FadA filaments to form a stable amyloid‐like structure. Our study provides a potential mechanistic link between periodontal disease and CRC and suggests anti‐amyloid therapies as possible interventions for Fn‐mediated disease processes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号