首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
  2021年   1篇
  2015年   2篇
  2014年   2篇
  2012年   6篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  1999年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
排序方式: 共有26条查询结果,搜索用时 203 毫秒
1.
The use of microorganisms as support for reduction of dissolved Pd(II) to immobilized Pd(0) nanoparticles is an environmentally friendly approach for Pd recovery from waste. To better understand and engineer Pd(0) nanoparticle synthesis, one has to consider the mechanisms by which Pd(II) is reduced on microbial surfaces. Escherichia coli, Shewanella oneidensis, and Pseudomonas putida were used as model organisms in order to elucidate the role of microbial cells in Pd(II) reduction under acidic conditions. Pd(II) was reduced by formate under acidic conditions, and the process occurred substantially faster in the presence of cells as compared to cell-free controls. We found no difference between native (untreated) and autoclaved cells, and could demonstrate that even a non-enzymatic protein (bovine serum albumin) stimulated Pd(II) reduction as efficiently as bacterial cells. Amine groups readily interact with Pd(II), and to specifically test their role in surface-assisted Pd(II) reduction by formate, we replaced bacterial cells with polystyrene microparticles functionalized with amine or carboxyl groups. Amine-functionalized microparticles had the same effect on Pd(II) reduction as bacterial cells, and the effect could be hampered if the amine groups were blocked by acetylation. The interaction with amine groups was confirmed by infrared spectroscopy on whole cells and amine-functionalized microparticles. In conclusion, bio-supported Pd(II) reduction on microbial surfaces is possibly mediated by a non-enzymatic mechanism. We therefore suggest the use of amine-rich biomaterials rather than intact cells for Pd bio-recovery from waste.  相似文献   
2.
3.
4.
Members of candidate division OP3 were detected in 16S rRNA gene clone libraries from methanogenic enrichment cultures that utilized limonene as a carbon and energy source. We developed probes for the visualization of OP3 cells. In situ hybridization experiments with newly designed OP3-specific probes [OP3-565 and Eub-338(VI)] revealed abundant small OP3 cocci attached to larger cells. Syntrophic Deltaproteobacteria, OP3 cells, and methanogens affiliating with Methanoculleus and Methanosaeta formed the limonenedegrading community.  相似文献   
5.
Adequate supplies of phosphorus (P) and iron (Fe) to legumes have been shown to be crucial in obtaining high nitrogen fixation rates and growth. These responses are anticipated as a result of the high requirement for P in energy transfer processes in the nodule and for Fe as a constituent of nitrogenase and leghemoglobin. However, little attention has been given to documenting the response of nitrogen fixation rates resulting from concentrations of P and Fe that actually exist in nodules. In particular, an open question is whether there is an interaction between nodule P and Fe concentrations that maximize nitrogen fixation activity. This study was designed to induce various concentrations of P and Fe in the nodule and to measure the resultant nitrogen accumulation and nitrogen fixation rates. Plant nitrogen accumulation was linearly correlated with both nodule P and Fe concentration, and with total plant nitrogen fixation rate as measured by acetylene reduction rate. Therefore, total nitrogen fixation rate was also correlated with nodule P and Fe concentrations, but a higher linear correlation was obtained for Fe as compared to P concentration. Surprisingly, nodule ureide concentration, which is generally assumed to be a positive index of nitrogen fixation rate, was negatively correlated with nodule P and Fe concentrations. These results indicated that higher concentrations of P and Fe in the nodules not only stimulated higher nitrogen fixation rates, but were associated with an enhanced ability to export ureides from the nodules. Since there was a linear response to both P and Fe over the range of nodule concentrations induced in these experiments, no evidence for optimum interactive concentrations of these two elements in the nodules was obtained.  相似文献   
6.
7.
Nanoscale magnetite can facilitate microbial extracellular electron transfer that plays an important role in biogeochemical cycles, bioremediation and several bioenergy strategies, but the mechanisms for the stimulation of extracellular electron transfer are poorly understood. Further investigation revealed that magnetite attached to the electrically conductive pili of Geobacter species in a manner reminiscent of the association of the multi‐heme c‐type cytochrome OmcS with the pili of Geobacter sulfurreducens. Magnetite conferred extracellular electron capabilities on an OmcS‐deficient strain unable to participate in interspecies electron transfer or Fe(III) oxide reduction. In the presence of magnetite wild‐type cells repressed expression of the OmcS gene, suggesting that cells might need to produce less OmcS when magnetite was available. The finding that magnetite can compensate for the lack of the electron transfer functions of a multi‐heme c‐type cytochrome has implications not only for the function of modern microbes, but also for the early evolution of microbial electron transport mechanisms.  相似文献   
8.
This paper is dedicated to the study on the external and internal mass transfers of glucose for succinic acid fermentation under substrate and product inhibitions using a bioreactor with stirred bed of immobilized Actinobacillus succinogenes cells. By means of the substrate mass balance for a single particle of biocatalysts, considering the kinetic model adapted for both inhibitory effects, specific mathematical models were developed for describing the profiles of the substrate concentration in the outer and inner regions of biocatalysts and for estimating the substrate mass flows in the liquid boundary layer surrounding the particle and inside the particle. The values of the mass flows were significantly influenced by the internal diffusion velocity and rate of the biochemical reaction of substrate consumption. These cumulated influences led to the appearance of a biological inactive region near the particle center, its magnitude varying from 0 to 5.3% of the overall volume of particles.  相似文献   
9.
Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P. carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable, making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.  相似文献   
10.
Hairpin-structured phosphorothioate oligodeoxyribonucleotides containing a singlet oxygen-sensitive linker in the loop were prepared. These compounds do not bind complementary nucleic acids in the dark. Upon irradiation with red light in the presence of chlorine e6 the linker within these compounds is cleaved and a single-stranded oligodeoxyribonucleotide is produced. The latter compound is an efficient binder of complementary nucleic acids. This is the first example of ‘caged’ phosphorothioate oligodeoxyribonucleotides, whose nucleic acid binding ability is triggered by red light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号