首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   5篇
  2023年   3篇
  2021年   5篇
  2020年   8篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   11篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2006年   1篇
  2002年   2篇
  1999年   2篇
  1997年   2篇
  1994年   1篇
  1990年   1篇
  1981年   1篇
排序方式: 共有82条查询结果,搜索用时 31 毫秒
1.

Background

Mood stabilizers used for treating bipolar disorder (BD) selectively downregulate arachidonic acid (AA) turnover (deacylation–reacylation) in brain phospholipids, when given chronically to rats. In vitro studies suggest that one of these, valproic acid (VPA), which is teratogenic, reduces AA turnover by inhibiting the brain long-chain acyl-CoA synthetase (Acsl)4 mediated acylation of AA to AA-CoA. We tested whether non-teratogenic VPA analogues might also inhibit Acsl4 catalyzed acylation, and thus have a potential anti-BD action.

Methods

Rat Acsl4-flag protein was expressed in Escherichia coli, and the ability of three VPA analogues, propylisopropylacetic acid (PIA), propylisopropylacetamide (PID) and N-methyl-2,2,3,3-tetramethylcyclopropanecarboxamide (MTMCD), and of sodium butyrate, to inhibit conversion of AA to AA-CoA by Acsl4 was quantified using Michaelis–Menten kinetics.

Results

Acsl4-mediated conversion of AA to AA-CoA in vitro was inhibited uncompetitively by PIA, with a Ki of 11.4 mM compared to a published Ki of 25 mM for VPA, while PID, MTMCD and sodium butyrate had no inhibitory effect.

Conclusions

PIA's ability to inhibit conversion of AA to AA-CoA by Acsl4 in vitro suggests that, like VPA, PIA may reduce AA turnover in brain phospholipids in unanesthetized rats, and if so, may be effective as a non-teratogenic mood stabilizer in BD patients.  相似文献   
2.
The use of biomaterials or microorganisms in PAHs degradation had presented an eye-catching performance. Pleurotus eryngii is a white rot fungus, which is easily isolated from the decayed woods in the tropical rain forest, used to determine the capability to utilize naphthalene, a two-ring polycyclic aromatic hydrocarbon as source of carbon and energy. In the meantime, biotransformation of naphthalene to intermediates and other by-products during degradation was investigated in this study. Pleurotus eryngii had been incubated in liquid medium formulated with naphthalene for 14 days. The presence of metabolites of naphthalene suggests that Pleurotus eryngii begin the ring cleavage by dioxygenation on C1 and C4 position to give 1,4-naphthaquinone. 1,4-Naphthaquinone was further degraded to benzoic acid, where the proposed terepthalic acid is absent in the cultured extract. Further degradation of benzoic acid by Pleurotus eryngii shows the existence of catechol as a result of the combination of decarboxylation and hydroxylation process. Unfortunately, phthalic acid was not detected in this study. Several enzymes, including manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase and 2,3-dioxygenase are enzymes responsible for naphthalene degradation. Reduction of naphthalene and the presence of metabolites in liquid medium showed the ability of Pleurotus eryngii to utilize naphthalene as carbon source instead of a limited glucose amount.  相似文献   
3.
Spatial management of fish populations can potentially be optimized by determining the area of influence of a particular species. We performed an acoustic tagging study implemented on Denis Island in the Seychelles to assess the area of influence of the heavily targeted shoemaker spinefoot, Siganus sutor. We investigated whether this species acts as a mobile link between coral patches and seagrass meadows, and whether their movements differed between day and night. The study incorporated an array of 22 acoustic stations deployed within dense coral patches, seagrass meadows and mixed habitats of both seagrass and coral. Fifteen S. sutor carrying internal acoustic tags were monitored from November 2016 until May 2017. Detection patterns revealed them to be diurnal herbivores, with only rare nocturnal movements. Home-range estimates showed that individuals differed in their spatial range extents and habitats used, covering ~15% of the total shallow subtidal coastline of the island. However, they displayed very small daily movements (<200 m), concentrated mainly around sites within mixed coral and seagrass habitats. An optimal number of detections was recorded when the coral to seagrass area ratio was approximately 1.6:1. This ratio was confirmed through statistical prediction modelling. Identification of such links of commercially important species between networked habitats may help authorities consider incorporating seagrass meadows of the Seychelles into management discussions, which are currently lacking.  相似文献   
4.
Biofabricated metal nanoparticles are generally biocompatible, inexpensive, and ecofriendly, therefore, are used preferably in industries, medical and material science research. Considering the importance of biofabricated materials, we isolated, characterized and identified a novel bacterial strain OS4 of Stenotrophomonas maltophilia (GenBank: JN247637.1). At neutral pH, this Gram negative bacterial strain significantly reduced hexavalent chromium, an important heavy metal contaminant found in the tannery effluents and minings. Subsequently, even at room temperature the supernatant of log phase grown culture of strain OS4 also reduced silver nitrate (AgNO3) to generate nanoparticles (AgNPs). These AgNPs were further characterized by UV–visible, Nanophox particle size analyzer, XRD, SEM and FTIR. As evident from the FTIR data, plausibly the protein components of supernatant caused the reduction of AgNO3. The cuboid and homogenous AgNPs showed a characteristic UV-visible peak at 428 nm with average size of ∼93 nm. The XRD spectra exhibited the characteristic Bragg peaks of 111, 200, 220 and 311 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. From the nanoparticle release kinetics data, the rapid release of AgNPs was correlated with the particle size and increasing surface area of the nanoparticles. A highly significant antimicrobial activity against medically important bacteria by the biofabricated AgNPs was also revealed as decline in growth of Staphylococcus aureus (91%), Escherichia coli (69%) and Serratia marcescens (66%) substantially. Additionally, different cytotoxic assays showed no toxicity of AgNPs to liver function, RBCs, splenocytes and HeLa cells, hence these particles were safe to use. Therefore, this novel bacterial strain OS4 is likely to provide broad spectrum benefits for curing chromium polluted sites, for biofabrication of AgNPs and ultimately in the nanoparticle based drug formulation for the treatment of infectious diseases.  相似文献   
5.
BackgroundThe human breast comprise several ductal systems, or lobes, which contain a small amount of fluid containing cells, hormones, proteins and metabolites. The complex physiology of these ducts is likely a contributing factor to the development of breast cancer, especially given that the vast majority of breast cancers begin in a single lobular unit.MethodsWe examined the levels of total protein, progesterone, estradiol, estrone sulfate, dehydroepiandrosterone sulfate, and macrophages in ductal fluid samples obtained from 3 ducts each in 78 women, sampled twice over a 6 month period. Samples were processed for both cytological and molecular analysis. Intraclass correlation coefficients and mixed models were utilized to identify significant data.ResultsWe found that the levels of these ductal fluid components were generally uncorrelated among ducts within a single breast and over time, suggesting that each lobe within the breast has a distinct physiology. However, we also found that estradiol was more correlated in women who were nulliparous or produced nipple aspirate fluid.ConclusionsOur results provide evidence that the microenvironment of any given lobular unit is unique to that individual unit, findings that may provide clues about the initiation and development of ductal carcinomas.  相似文献   
6.
Farooq A 《CMAJ》2011,183(18):2141-2142
  相似文献   
7.
8.

Background

Linoleic acid (LA) is abundant in modern industrialized diets. Oxidized LA metabolites (OXLAMs) and reactive aldehydes, such as 4-hydroxy-2-nonenal (4-HNE), are present in heated vegetable oils and can be endogenously synthesized following consumption of dietary LA. OXLAMs have been implicated in cerebellar degeneration in chicks; 4-HNE is linked to neurodegenerative conditions in mammals. It unknown whether increasing dietary LA or OXLAMs alters the levels of oxidized fatty acids (oxylipins), precursor fatty acids, or 4-HNE in mammalian brain.

Objectives

To determine the effects of increases in dietary OXLAMs and dietary LA, on levels of fatty acids, oxylipins, and 4-HNE in mouse brain tissues.

Methods

Mice (n?=?8 per group) were fed one of three controlled diets for 8?weeks: (1) a low LA diet, (2) a high LA diet, or (3) the low LA diet with added OXLAMs. Brain fatty acids, oxylipins, and 4-HNE were quantified in mouse cerebellum and cerebral cortex by gas chromatography-flame ionization detection, liquid chromatography-tandem mass spectrometry, and immunoblot, respectively.

Results

Increasing dietary LA significantly increased omega-6 fatty acids, decreased omega-3 fatty acids, and increased OXLAMs in brain. Dietary OXLAMs had minimal effect on oxidized lipids but did decrease both omega-6 and omega-3 fatty acids. Neither dietary LA nor OXLAMs altered 4-HNE levels.

Conclusion

Brain fatty acids are modulated by both dietary LA and OXLAMs, while brain OXLAMs are regulated by endogenous synthesis from LA, rather than incorporation of preformed OXLAMs.  相似文献   
9.
The development of a safe and efficient bioreactor design has remained a challenge for the clinical application of immobilized enzymes. Specifically, the use of immobilized heparinase I has been the target of many studies to make heparin anticoagulation therapy safer for the critically ill patient with kidney failure or heart disease. We have investigated the use of Taylor-Couette flow for a novel type of bioreactor. In a previous study, we showed that the fluidization of agarose immobilized heparinase within Taylor vortices in whole blood can lead to extensive blood damage in the form of cell depletion and hemolysis. Based on these findings, we designed and developed a reactor, referred to as vortex-flow plasmapheretic reactor (VFPR), that incorporated plasmapheresis and fluidization of the agarose in the reactive compartment, separate from the whole-blood path. In the present study, immobilized heparinase I was tested as a means of achieving regional heparinization of a closed circuit. This is a method in which heparin is infused into the extracorporeal circuit predialyzer and neutralized postdialyzer. Saline studies were performed with an immobilized heparinase I-packed bed and with the VFPR. An in vitro feasibility study was performed with the VFPR using human blood. The VFPR achieved heparin conversions of 44 +/- 0.5% and 34 +/- 2% in saline and blood, respectively. In addition, the VFPR caused no blood damage. We report a novel method to achieve fluidization which depended on secondary, circumferencial flow, and was independent of the primary flow through the device.  相似文献   
10.
Purpose The low-density lipoprotein receptor (LDLr) mediates the uptake of LDL particles enriched with cholesterol, into several tissues. In contrast to other tissues, the brain is thought to obtain cholesterol solely by de novo synthesis, yet certain brain regions such as the brainstem are highly enriched with the LDLr. The goal of the present study was to assess the role of the LDLr in maintaining cholesterol concentrations in the brainstem of wildtype and LDLr knockout (LDLr−/−) mice. Cholesterol concentrations were also measured in the cortex, which served as a reference point, due to the lower expression of the LDLr, as compared to the brainstem. Methods LDLr−/− and wildtype mice consumed an AIN-93G diet ad libitum until 7 weeks of age. After microwaving, the cortex and anterior brain stem were isolated for cholesterol analysis. Cholesterol was extracted into chloroform/methanol, derivatized in trimethylsilyl chloride and measured by gas chromatography/mass spectrometry. Results Concentrations of cholesterol in the brainstem did not differ statistically between LDLr−/− (18.8 ± 1.6 mg/g wet weight brain) and wildtype (19.1 ± 2.0). Cortical cholesterol concentrations also did not differ statistically between LDLr−/− (11.0 ± 0.4 mg/g wet weight brain) and wildtype (11.1 ± 0.2) mice. Conclusion The LDLr is not necessary for maintaining cholesterol concentrations in the cortex or brainstem, suggesting that other mechanisms are sufficient to maintain brain cholesterol concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号