首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2020年   1篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
排序方式: 共有7条查询结果,搜索用时 296 毫秒
1
1.
Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co‐occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub‐Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans‐Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.  相似文献   
2.
Several mosquito-borne diseases affect the Western Indian Ocean islands. Culex pipiens quinquefasciatus is one of these vectors and transmits filariasis, Rift Valley and West Nile viruses and the Japanese encephalitis. To limit the impact of these diseases on public health, considerable vector control efforts have been implemented since the 50s, mainly through the use of neurotoxic insecticides belonging to Organochlorines (OC), Organophosphates (OP) and pyrethroids (PYR) families. However, mosquito control failures have been reported on site, and they were probably due to the selection of resistant individuals in response to insecticide exposure. In this study, we used different approaches to establish a first regional assessment of the levels and mechanisms of resistance to various insecticides. Bioassays were used to evaluate resistance to various insecticides, enzyme activity was measured to assess the presence of metabolic resistances through elevated detoxification, and molecular identification of known resistance alleles was investigated to determine the frequency of target-site mutations. These complementary approaches showed that resistance to the most used insecticides families (OC, OP and PYR) is widespread at a regional scale. However, the distribution of the different resistance genes is quite heterogeneous among the islands, some being found at high frequencies everywhere, others being frequent in some islands and absent in others. Moreover, two resistance alleles displayed clinal distributions in Mayotte and La Réunion, probably as a result of a heterogeneous selection due to local treatment practices. These widespread and diverse resistance mechanisms reduce the capacity of resistance management through classical strategies (e.g. insecticide rotation). In case of a disease outbreak, it could undermine the efforts of the vector control services, as only few compounds could be used. It thus becomes urgent to find alternatives to control populations of Cx. p. quinquefasciatus in the Indian Ocean.  相似文献   
3.
The production of large numbers of males needed for a sustainable sterile insect technique (SIT) control program requires significant developmental and operational costs. This may constitute a significant economic barrier to the installation of large scale rearing facilities in countries that are undergoing a transition from being largely dependent on insecticide use to be in a position to integrate the SIT against Aedes albopictus. Alternative options available for those countries could be to rely on outsourcing of sterile males from a foreign supplier, or for one centralised facility to produce mosquitoes for several countries, thus increasing the efficiency of the mass-rearing effort. However, demonstration of strain compatibility is a prerequisite for the export of mosquitoes for transborder SIT applications. Here, we compared mating compatibility among Ae. albopictus populations originating from three islands of the South Western Indian Ocean, and assessed both insemination rates and egg fertility in all possible cross-mating combinations. Furthermore, competitiveness between irradiated and non-irradiated males from the three studied strains, and the subsequent effect on female fertility were also examined. Although morphometric analysis of wing shapes suggested phenoptypic differences between Ae. albopictus strains, perfect reproductive compatibility between them was observed. Furthermore, irradiated males from the different islands demonstrated similar levels of competitiveness and induced sterility when confronted with fertile males from any of the other island populations tested. In conclusion, despite the evidence of inter-strain differences based on male wing morphology, collectively, our results provide a new set of expectations for the use of a single candidate strain of mass-reared sterile males for area-wide scale application of SIT against Ae. albopictus populations in different islands across the South Western Indian Ocean. Cross-mating competitiveness tests such as those applied here are necessary to assess the quality of mass reared strains for the trans-border application of sterile male release programs.  相似文献   
4.
5.
Sustaining elimination of malaria in areas with high receptivity and vulnerability will require effective strategies to prevent reestablishment of local transmission, yet there is a dearth of evidence about this phase. Mauritius offers a uniquely informative history, with elimination of local transmission in 1969, re-emergence in 1975, and second elimination in 1998. Towards this end, Mauritius's elimination and prevention of reintroduction (POR) programs were analyzed via a comprehensive review of literature and government documents, supplemented by program observation and interviews with policy makers and program personnel. The impact of the country's most costly intervention, a passenger screening program, was assessed quantitatively using simulation modeling.On average, Mauritius spent $4.43 per capita per year (pcpy) during its second elimination campaign from 1982 to 1988. The country currently spends $2.06 pcpy on its POR program that includes robust surveillance, routine vector control, and prompt and effective treatment and response. Thirty-five percent of POR costs are for a passenger screening program. Modeling suggests that the estimated 14% of imported malaria infections identified by this program reduces the annual risk of indigenous transmission by approximately 2%. Of cases missed by the initial passenger screening program, 49% were estimated to be identified by passive or reactive case detection, leaving an estimated 3.1 unidentified imported infections per 100,000 inhabitants per year.The Mauritius experience indicates that ongoing intervention, strong leadership, and substantial predictable funding are critical to consistently prevent the reestablishment of malaria. Sustained vigilance is critical considering Mauritius's enabling conditions. Although the cost of POR is below that of elimination, annual per capita spending remains at levels that are likely infeasible for countries with lower overall health spending. Countries currently embarking on elimination should quantify and plan for potentially similar POR operations and costs.  相似文献   
6.
The use of the bacterium Wolbachia is an attractive alternative method to control vector populations. In mosquitoes, as in members of the Culex pipiens complex, Wolbachia induces a form of embryonic lethality called cytoplasmic incompatibility, a sperm-egg incompatibility occurring when infected males mate either with uninfected females or with females infected with incompatible Wolbachia strain(s). Here we explore the feasibility of the Incompatible Insect Technique (IIT), a species-specific control approach in which field females are sterilized by inundative releases of incompatible males. We show that the Wolbachia wPip(Is) strain, naturally infecting Cx. p. pipiens mosquitoes from Turkey, is a good candidate to control Cx. p. quinquefasciatus populations on four islands of the south-western Indian Ocean (La Réunion, Mauritius, Grande Glorieuse and Mayotte). The wPip(Is) strain was introduced into the nuclear background of Cx. p. quinquefasciatus mosquitoes from La Réunion, leading to the LR[wPip(Is)] line. Total embryonic lethality was observed in crosses between LR[wPip(Is)] males and all tested field females from the four islands. Interestingly, most crosses involving LR[wPip(Is)] females and field males were also incompatible, which is expected to reduce the impact of any accidental release of LR[wPip(Is)] females. Cage experiments demonstrate that LR[wPip(Is)] males are equally competitive with La Réunion males resulting in demographic crash when LR[wPip(Is)] males were introduced into La Réunion laboratory cages. These results, together with the geographic isolation of the four south-western Indian Ocean islands and their limited land area, support the feasibility of an IIT program using LR[wPip(Is)] males and stimulate the implementation of field tests for a Cx. p. quinquefasciatus control strategy on these islands.  相似文献   
7.
The use of the sterile insect technique (SIT) is being considered as an additional tool for the control of Aedes albopictus (Skuse) (Diptera: Culicidae), the vector of Chikungunya and Dengue viruses in Mauritius. The aim of this study was to assess the competitiveness value of sterile males of different age and under various release conditions. Three release ratios were tested with sterile males of either 1, 3, or 5 days old at release. The competition of sterile males against same age or a mixed age population of fertile males (which is more representative of the field situation) was also investigated. The participation in mating (observed through single female oviposition), the average-induced sterility, and the male competitiveness index indicated that 3-day-old sterile males have the best balance between survival and mating capacity, and should therefore be the favored age of release in the field. Reduction in the cage fertility was obtained at 5-to-1 release ratio; however, it is speculated that at least a 10-fold ratio of sterile-to-fertile males should be chosen to induce substantial sterility in the wild Ae. albopictus population in the SIT pilot release site in Mauritius. Interestingly, this study showed for the first time that the age of the fertile male population against which the sterile males compete is a very important parameter that can significantly affect the sexual performance of sterile males, leading to overestimation of their competitiveness values.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号