首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有5条查询结果,搜索用时 547 毫秒
1
1.
Surveys of microsatellite variation show that genetic diversity has largely recovered in two reef-building corals, Pocillopora damicornis and Seriatopora hystrix (Scleractinia: Pocilloporidae), on reefs which were decimated by the eruption of the volcano Krakatau in 1883. Assignment methods and gene flow estimates indicate that the recolonization of Krakatau occurred mainly from the closest upstream reef system, Pulau Seribu, but that larval input from other regions has also occurred. This pattern is clearer in S. hystrix, which is traditionally the more dispersal-limited species. Despite these observed patterns of larval dispersal, self-recruitment appears to now be the most important factor in supplying larvae to coral populations in Krakatau. This suggests that the colonization of devastated reefs can occur quickly through larval dispersal; however, their survival requires local sources of larvae for self-recruitment. This research supports the observation that the recovery of genetic diversity in coral reef animals can occur on the order of decades and centuries rather than millennia. Conservation measures aimed at sustaining coral reef populations in Krakatau and elsewhere should include both the protection of upstream source populations for larval replenishment should disaster occur as well as the protection of large adult colonies to serve as local larval sources.  相似文献   
2.
Previous studies of the population genetic structure of the corallivorous crown-of-thorns starfish (COTS) Acanthaster planci in the Pacific Ocean showed high levels of gene flow that were assumed to reflect a high dispersal potential. However, the phylogeographic analyses of the Pacific crown-of-thorns starfish species of this study, using the highly variable mitochondrial control region and the most complete geographic coverage to date, contradict this view. Results show high levels of overall genetic structure (ΦST = 0.198), suggesting a complex history of range restrictions and expansions, a pattern that we hypothesize results from changes in topography and oceanography associated with sea-level changes. However, results also show signatures of ongoing gene flow between populations isolated in the past and high levels of genetic connectivity even among distant populations. Combined, these results indicate that while there are significant limits to genetic exchange among populations among Pacific Ocean populations of the crown-of-thorns starfish, the high larval dispersal potential of this species is often achieved as well.  相似文献   
3.

Background

Understanding the limits and population dynamics of closely related sibling species in the marine realm is particularly relevant in organisms that require management. The crown-of-thorns starfish Acanthaster planci, recently shown to be a species complex of at least four closely related species, is a coral predator infamous for its outbreaks that have devastated reefs throughout much of its Indo-Pacific distribution.

Methodology/Principal Findings

In this first Indian Ocean-wide genetic study of a marine organism we investigated the genetic structure and inferred the paleohistory of the two Indian Ocean sister-species of Acanthaster planci using mitochondrial DNA sequence analyses. We suggest that the first of two main diversification events led to the formation of a Southern and Northern Indian Ocean sister-species in the late Pliocene-early Pleistocene. The second led to the formation of two internal clades within each species around the onset of the last interglacial. The subsequent demographic history of the two lineages strongly differed, the Southern Indian Ocean sister-species showing a signature of recent population expansion and hardly any regional structure, whereas the Northern Indian Ocean sister-species apparently maintained a constant size with highly differentiated regional groupings that were asymmetrically connected by gene flow.

Conclusions/Significance

Past and present surface circulation patterns in conjunction with ocean primary productivity were identified as the processes most likely to have shaped the genetic structure between and within the two Indian Ocean lineages. This knowledge will help to understand the biological or ecological differences of the two sibling species and therefore aid in developing strategies to manage population outbreaks of this coral predator in the Indian Ocean.  相似文献   
4.
 The role of dissolved free amino acids (DFAA) in nitrogen and energy budgets was investigated for the giant clam, Tridacna maxima, growing under field conditions at One Tree Island, at the southern end of the Great Barrier Reef, Australia. Giant clams (121.5–143.7 mm in shell length) took up neutral, acidic and basic amino acids. The rates of net uptake of DFAA did not differ between light and dark, nor for clams growing under normal or slightly enriched ammonium concentrations. Calculations based on the net uptake concentrations typical of the maximum concentrations of DFAA found in coral reef waters (∼0.1 μM ) revealed that DFAA could only contribute 0.1% and 1% of the energy and nitrogen demands of giant clams, respectively. These results suggest that DFAA does not supply significant amounts of energy or nitrogen for giant clams or their symbionts. Accepted: 7 October 1998  相似文献   
5.
Blood pythons in northeastern Sumatra display a series of discrete colour morphs, even among hatchlings within a single clutch. The first step towards understanding the maintenance of this polymorphism is to test the null hypothesis that colour variation in this species has no major biological correlates. Data on >2,000 blood pythons killed for the commercial leather industry enabled us to test, and reject, this hypothesis. The four colour morphs differed significantly in most of the traits that we measured, including temporal and spatial abundances, sex ratios, age structures, mean adult body sizes, body shapes (tail length and body mass relative to snout-vent length), energy stores, numbers of gut parasites, prey types, feeding frequencies and clutch sizes. The causal basis for these associations remains unclear, but is likely to involve three processes: direct effects of colour, linkages between genes for colour and other traits, and correlated spatial heterogeneity in colour, morphology and ecology. The colour polymorphism may be maintained by frequency-dependent selection and genotype-specific habitat selection, because these sedentary ambush predators are under strong selection for effective camouflage to hide them from both predators and potential prey. In support of this hypothesis, similar colour polymorphisms have evolved independently in several other snake taxa that rely upon ambush predation. Received: 18 December 1997 / Accepted: 23 March 1998  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号