首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 156 毫秒
1
1.
Dermatophytes are a group of closely related fungi that nourish on keratinized materials for their survival. They infect stratum corneum, nails, and hair of human and animals, accounting the largest portion of fungi causing superficial mycoses. Huge populations are suffering from dermatophytoses, though the biology of these fungi is largely unknown yet. Reasons are partially attributed to the poor amenability of dermatophytes to genetic manipulation. However, advancements in this field over the last decade made it possible to conduct genetic studies to satisfying extents. These included genetic transformation methods, indispensable molecular tools, i.e., dominant selectable markers, inducible promoter, and marker recycling system, along with improving homologous recombination frequency and gene silencing. Furthermore, annotated genome sequences of several dermatophytic species have recently been available, ensuring an optimal recruitment of the molecular tools to expand our knowledge on these fungi. In conclusion, the establishment of basic molecular tools and the availability of genomic data will open a new era that might change our understanding on the biology and pathogenicity of this fungal group.  相似文献   
2.
Du  Mengqian  Hu  Weimin  Tamura  Takashi  Alshahni  Mohamed Mahdi  Satoh  Kazuo  Yamanishi  Chiaki  Naito  Toshio  Makimura  Koichi 《Mycopathologia》2021,186(2):189-198
Background

Candida auris is an emerging pathogen associated with outbreaks in clinical settings. Isolates of the pathogen have been geographically clustered into four clades with high intra-clade clonality. Pathogenicity varies among the clades, highlighting the importance of understanding these differences.

Objectives

To examine the physiological and biochemical properties of each clade of C. auris to improve our understanding of the fungus.

Methods

Optimal growth temperatures of four strains from three clades, East Asia, South Asia and South Africa, were explored. Moreover, assimilation and antifungal susceptibility properties of 22 C. auris strains from the three clades were studied.

Results

The optimal growth temperatures of all strains were 35–37 °C. Assimilation testing demonstrated that the commercial API ID 32 C system can be used to reliably identify C. auris based on the biochemical properties of the yeast. Notably, C. auris can be uniquely differentiated from commonly clinical fungi by its ability to assimilate raffinose and inability to utilize D-xylose, suggesting a useful simple screening tool. The antifungal susceptibility results revealed that all strains are resistant against fluconazole (minimal inhibitory concentration (MIC) 4 to?>?64 µg/mL) and miconazole (MIC 8 to?>?16 µg/mL), with strains from the Japanese lineage showing relatively lower MIC values (1–4 µg/mL). Conversely, itraconazole, voriconazole, amphotericin B, micafungin and caspofungin were active against most of the tested strains. On the clade level, East Asian strains generally showed lower MICs against azoles comparing to the other clades, while they displayed MICs against flucytosine higher than those of strains from South Africa and South Asia clades.

Conclusion

Our data suggest a simple identification approach of C. auris based on its physiological and biochemical properties and highlight aspects of C. auris population from various clades.

  相似文献   
3.
As a part of a series of studies regarding the microbial biota in manned space environments, fungi were isolated from six pieces of equipment recovered from the Japanese Experimental Module “KIBO” of the International Space Station and from a space shuttle. Thirty‐seven strains of fungi were isolated, identified and investigated with regard to morphological phenotypes and antifungal susceptibilities. The variety of fungi isolated in this study was similar to that of several previous reports. The dominant species belonged to the genera Penicillium, Aspergillus and Cladosporium, which are potential causative agents of allergy and opportunistic infections. The morphological phenotypes and antifungal susceptibilities of the strains isolated from space environments were not significantly different from those of reference strains on Earth.  相似文献   
4.
Targeted gene deletion is now available for molecular genetic research of dermatophytes, and the physiological roles of several genes have been elucidated. However, this method cannot be applied to essential genes, which can be potential drug targets. To overcome this limitation, we have developed a conditional gene knockdown system using a copper-responsive promoter. The promoter sequence of the copper transporter gene CTR4 (P(CTR4)) and that of the copper efflux pump gene CRP1 (P(CRP1)) derived from Trichophyton rubrum were examined for their response to copper in Arthroderma vanbreuseghemii. P(CTR4) was demonstrated to repress expression of a reporter gene in the presence of copper, while the activity of P(CRP1) was induced by addition of copper. Importantly, P(CTR4) regulated the gene expression more tightly. Furthermore, when P(CTR4) was applied to regulate the expression of the endogenous genes ERG1 and TRP5, their conditional mutants exhibited decreased growth activity under the repressive conditions. These results suggest that the P(CTR4)-based gene regulation system represents a powerful tool for identification and characterization of a broad range of genes, including essential genes, in dermatophytes.  相似文献   
5.
Mycopathologia - Otomycosis is a superficial infection of the external ear caused by fungal pathogens. The genera Aspergillus and Candida are considered the main fungal causative agents, with the...  相似文献   
6.
Background

Candida albicans is the most frequent pathogenic fungus in oral cavities. It adheres to dental tissues as part of dental plaques and contributes to caries formation.

Objectives

To evaluate the effect of silver diamine fluoride (SDF) on reducing C. albicans adhesion on dentine surfaces.

Methods

Flat dentine surfaces were prepared from bovine dental disks, and samples were divided into three groups. The first and second groups were pretreated for 3 min with 299 mM or 2.99 M SDF, respectively, and the third group (control) did not undergo any SDF pretreatment. All samples were washed, inoculated with C. albicans suspension onto their dentine surface, incubated at 30 °C for 6 h, and washed again to remove any nonadherent cells. The abundance of adherent cells was investigated using colorimetric and real-time polymerase chain reaction approaches. Subsequently, the morphological changes in C. albicans by pretreatment with SDF were observed under a scanning electron microscope (SEM).

Results

SDF inhibited candidal growth at concentrations as low as 2.99 µM. Dentine disks pretreated with 299 mM or 2.99 M SDF displayed significantly fewer adhered cells as compared with the control group. Upon pretreatment with SDF, SEM images showed severe morphological changes in the cellular walls, in a dose-dependent manner, suggesting a fungicidal effect of SDF against the yeast.

Conclusion

SDF should be considered for clinical applications aimed at inhibiting dental plaque caused by C. albicans, particularly in children and elderly individuals.

  相似文献   
7.
Targeted gene disruption experiments in Trichophyton mentagrophytes are impeded by the dominant of repair of DNA double strand breaks through a nonhomologous end joining pathway (NHEJ). Inactivation of human DNA ligase IV homologs, which is involved in the final step of the NHEJ pathway, has been shown to enhance homologous recombination (HR) frequency in filamentous fungi. To improve the frequency of HR in T. mentagrophytes, the lig4 homolog (TmLIG4) was disrupted. T. mentagrophytes lacking TmLIG4 showed no discernable phenotypic differences when compared to wild-type controls. Both mutant and parent strains had almost identical growth ability, sporulation rate and sensitivity to DNA damaging agents. When four different loci were disrupted in the TMLIG4-deficient mutant, HR frequencies reached as high as 93% depending on the locus, whereas they ranged from 0%-40% in the wild-type. These results suggest that studies in strains lacking TmLIG4 would help to improve our understanding of dermatophytosis by facilitating the genetic manipulation of dermatophytes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号