首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   4篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1999年   3篇
  1998年   8篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1983年   2篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1934年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.

Background  

Populations of the Oriental White-backed Vulture (Gyps bengalensis) have declined by over 95% within the past decade. This decline is largely due to incidental consumption of the non-steroidal anti-inflammatory veterinary pharmaceutical diclofenac, commonly used to treat domestic livestock. The conservation status of other Gyps vultures in southern Asia is also of immediate concern, given the lack of knowledge regarding status of their populations and the continuing existence of taxonomic uncertainties. In this study, we assess phylogenetic relationships for all recognized species and the majority of subspecies within the genus Gyps. The continuing veterinary use of diclofenac is an unknown but potential risk to related species with similar feeding habits to Gyps bengalensis. Therefore, an accurate assessment of the phylogenetic relationships among Gyps vultures should aid in their conservation by clarifying taxonomic uncertainties, and enabling inference of their respective relatedness to susceptible G. bengalensis.  相似文献   
2.
3.
4.
alpha 1-Proteinase inhibitor (alpha 1-PI), a member of the serine proteinase inhibitor superfamily, has a primary role in controlling neutrophil elastase activity within the mammalian circulation. Several studies have indicated that the reactive center region of alpha 1-PI, the amino acid sequence of which is critical to recognition of and binding to target proteinases, is highly divergent within and among species. This appears to be a consequence of accelerated rates of evolution that may have been driven by positive Darwinian selection. In order to examine this and other features of alpha 1-PI evolution in more detail, we have isolated and sequenced cDNAs representing alpha 1- PI mRNAs of the mouse species Mus saxicola and Mus minutoides and have compared these with a number of other mammalian alpha 1-PI mRNAs. Relative to other mammalian mRNAs, the extent of nonsynonymous substitution is generally high throughout the alpha 1-PI mRNA molecule, indicating greater overall rates of amino acid substitution. Within and among mouse species, the 5'-half of the mRNA, but not the 3'-half, has been homogenized by concerted evolution. Finally, the reactive center is under diversifying or positive Darwinian selection in murid rodents (rats, mice) and guinea pigs yet is under purifying selection in primates and artiodactyls. The significance of these findings to alpha 1-PI function and the possible selective forces driving evolution of serpins in general are discussed.   相似文献   
5.
Patterns of mitochondrial DNA (mtDNA) variation were examined in 133 mole-rats constituting all four chromosomal species (2n = 52, 2n = 54, 2n = 58, and 2n = 60) of the Spalax ehrenbergi superspecies in Israel, as well as the peripheral isolates of 2n = 60. In the main range of the complex, a total of 28 mtDNA haplotypes were found in 64 mole-rats, with most haplotypes being unique to either a single chromosomal species or population. mtDNA divergence increased from low to high diploid number in a north-to-south direction in Israel. Overall levels of mtDNA diversity were unexpectedly the highest in the 2n = 60, the youngest species of the complex. The mtDNA haplotypes can be separated into two major groups, 2n = 52-54 and 2n = 58-60, and a phylogenetic analysis for each group revealed evidence of a few haplotypes not sorted by diploid number. The overall patterns of mtDNA divergence seen within and among the four chromosomal species are consistent with the parapatric mode of speciation as suggested from previous studies of allozyme and DNA hybridization. In a separate data set the patterns of mtDNA variation were examined across the main geographic range and across peripheral semi-isolates and isolates of the 2n = 60 chromosomal species. Fifteen haplotypes were found in 69 mole-rats. High levels of mtDNA diversity characterized the main range, semi-isolated, and even some desert isolated populations. The peripheral isolates contain much mtDNA diversity, including novel haplotypes.   相似文献   
6.
Arginine decarboxylase (ADC) is an important enzyme in the production of putrescine and polyamines in plants. It is encoded by a single or low-copy nuclear gene that lacks introns in sequences studied to date. The rate of Adc amino acid sequence evolution is similar to that of ndhF for the angiosperm family studied. Highly conserved regions provide several target sites for PCR priming and sequencing and aid in nucleotide and amino acid sequence alignment across a range of taxonomic levels, while a variable region provides an increased number of potentially informative characters relative to ndhF for the taxa surveyed. The utility of the Adc gene in plant molecular systematic studies is demonstrated by analysis of its partial nucleotide sequences obtained from 13 representatives of Brassicaceae and 3 outgroup taxa, 2 from the mustard oil clade (order Capparales) and 1 from the related order Malvales. Two copies of the Adc gene, Adc1 and Adc2, are found in all members of the Brassicaceae studied to data except the basal genus Aethionema. The resulting Adc gene tree provides robust phylogenetic data regarding relationships within the complex mustard family, as well as independent support for proposed tribal realignments based on other molecular data sets such as those from chloroplast DNA.   相似文献   
7.
Considerable evidence indicates that ethanol acts on specific residues in the transmembrane domains of glycine receptors (GlyRs). In this study, we tested the hypothesis that the extracellular domain is also a target for ethanol action by investigating the effect of cysteine substitutions at positions 52 (extracellular domain) and 267 (transmembrane domain) on responses to n-alcohols and propyl methanethiosulfonate (PMTS) in alpha1GlyRs expressed in Xenopus oocytes. In support of the hypothesis: (i) The A52C mutation changed ethanol sensitivity compared to WT GlyRs; (ii) PMTS produced irreversible alcohol-like potentiation in A52C GlyRs; and (iii) PMTS binding reduced the n-chain alcohol cutoff in A52C GlyRs. Further studies used PMTS binding to cysteines at positions 52 or 267 to block ethanol action at one site in order to determine its effect at other site(s). In these situations, ethanol caused negative modulation when acting at position 52 and positive modulation when acting at position 267. Collectively, these findings parallel the evidence that established the TM domain as a target for ethanol, suggest that positions 52 and 267 are part of the same alcohol pocket and indicate that the net effect of ethanol on GlyR function reflects the summation of its positive and negative modulatory effects on different targets.  相似文献   
8.
The current study used an ethanol antagonist, increased atmospheric pressure, to test the hypothesis that ethanol acts on multiple sites in glycine receptors (GlyRs). The effects of 12 times normal atmospheric pressure of helium-oxygen gas (pressure) on ethanol-induced potentiation of GlyR function in Xenopus oocytes expressing human alpha1, alpha2 or the mutant alpha1(A52S) GlyRs were measured using two-electrode voltage clamp. Pressure reversibly antagonized potentiation of glycine in alpha1 GlyR by 40-200 mm ethanol, but did not antagonize 10 and 25 mm ethanol in the same oocytes. In contrast, pressure did not significantly affect potentiation of glycine by 25-100 mm ethanol in alpha2 GlyRs, nor did pressure alter ethanol response in the A52S mutant. Pressure did not affect baseline receptor function or response to glycine in the absence of ethanol. These findings provide the first direct evidence for multiple sites of ethanol action in GlyRs. The sites can be differentiated on the basis of ethanol concentration, subunit and structural composition and sensitivities to pressure antagonism of ethanol. Parallel studies with butanol support this conclusion. The mutant alpha1(A52S) GlyR findings suggest that increased attention should be focused on the amino terminus as a potential target for ethanol action.  相似文献   
9.
ATP-gated P2X4 receptors (P2X4R) are abundantly expressed in the CNS. However, little is known about the molecular targets for ethanol action in P2X4Rs. The current investigation tested the hypothesis that the ectodomain-transmembrane (TM) interface contains residues that are important for the action of ethanol in P2X4Rs. Wild type (WT) and mutant P2X4R were expressed in Xenopus oocytes. ATP concentration–response curves and ethanol (10–200 mM)-induced changes in ATP EC10-gated currents were determined using two-electrode voltage clamp (−70 mV). Alanine substitution at the ectodomain-TM1 interface (positions 50–61) resulted in minimal changes in ethanol response. On the other hand, alanine substitution at the ectodomain-TM2 interface (positions 321–337) identified two key residues (D331 and M336) that significantly reduced ethanol inhibition of ATP-gated currents without causing marked changes in ATP I max, EC50, or Hill's slope. Other amino acid substitutions at positions 331 and 336 significantly altered or eliminated the modulatory effects of ethanol. Linear regression analyses revealed a significant relationship between hydropathy and polarity, but not molecular volume/molecular weight of the residues at these two positions. The results support the proposed hypothesis and represent an important step toward developing ethanol-insensitive receptors for investigating the role of P2X4Rs in mediating behavioral effects of ethanol.  相似文献   
10.
Previous studies have found that body temperature during intoxication influences brain sensitivity to ethanol with the sensitivity being less at cool than at warm body temperatures. If this effect of temperature reflects alterations in the acute membrane perturbing action of ethanol, as suggested by in vitro studies, then body temperature reduction (hypothermia) during tolerance acquisition should reduce the effectiveness of a given ethanol concentration and, in turn, should reduce the development of chronic functional ethanol tolerance. To test this hypothesis, adult drug-naive C57BL/6J mice were injected i.p. once daily for five days with 3.6 g/kg ethanol (20% w/v) and were exposed to 34 degrees C or 25 degrees C for five hours following injection. On day 6, both ethanol acquisition groups and naive mice were injected i.p. with 4.0 g/kg ethanol and exposed to 25 degrees C. During acquisition, the group exposed to 34 degrees C had significantly higher body temperatures than the mice exposed to 25 degrees C, and there were no statistically significant differences in blood ethanol concentrations between treatment conditions. The extent of tolerance on day 6, measured by sleep-times and wake-up blood and brain ethanol concentrations versus naive mice, was significantly greater in the 34 degrees C acquisition group than in the 25 degrees C acquisition group. The results demonstrate that body temperature influences tolerance development in the manner predicted by membrane perturbation theories of anesthesia and adaptation based tolerance theories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号