首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2023年   1篇
  2021年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有12条查询结果,搜索用时 109 毫秒
1.
2.
3.
The potential of ligand binding proteins as drug carriers and delivery systems has recently sparked great interest. We investigated the potential of tear lipocalin (TL) to bind the antibiotic, rifampin, and the environmental conditions for controlled release. To determine if TL binds rifampin, gel filtration was used to isolate protein fractions of tears. Rifampin was detected by absorbance spectroscopy in the elution fractions containing TL. The bound complex of rifampin-TL generates optical activity at about 360 nm, indicating a unique conformation at the binding site. Rifampin has a higher affinity for TL (Kd=128 microM) than albumin. Rifampin is released from the TL calyx in acidic conditions and is displaced by palmitic acid. Autooxidation of free rifampin begins in minutes but is delayed by at least 3 h in the presence of TL. These properties are conducive to stabilization and delivery of rifampin to tubercles that are acidic and rich in fatty acids. These studies show the potential of TL as a carrier for rifampin with controlled release to a targeted environment.  相似文献   
4.
Positioned at the axis between the cell and its environment, mTOR directs a wide range of cellular activity in response to nutrients, growth factors, and stress. Our understanding of the role of mTOR is evolving beyond the spatial confines of the cytosol, and its role in the nucleus becoming ever more apparent. In this review, we will address various studies that explore the role of nuclear mTOR (nmTOR) in specific cellular programs and how these pathways influence one another. To understand the emerging roles of nuclear mTOR, we discuss data and propose plausible mechanisms to offer novel ideas, hypotheses, and future research directions.  相似文献   
5.
Extracellular Phr pentapeptides produced by gram-positive, spore-forming bacteria regulate processes during the transition from exponential- to stationary-phase growth. Phr pentapeptides are produced by cleavage of their precursor proteins. We determined the residues that direct this cleavage for the Bacillus subtilis Phr peptide, CSF, which is derived from the C terminus of PhrC. Strains expressing PhrC with substitutions in residues -1 to -5 relative to the cleavage site had a defect in CSF production. The mutant PhrC proteins retained a functional signal sequence for secretion, as assessed by secretion of PhrC-PhoA fusions. To determine whether the substitutions directly affected cleavage of PhrC to CSF, we tested cleavage of synthetic pro-CSF peptides that corresponded to the C terminus of PhrC and had an amino acid substitution at the -2, -3, or -4 position. The mutant pro-CSF peptides were cleaved less efficiently to CSF than the wild-type pro-CSF peptide whether they were incubated with whole cells, cell wall material, or the processing protease subtilisin or Vpr. To further define the range of amino acids that support CSF production, the amino acid at the -4 position of PhrC was replaced by the 19 canonical amino acids. Only four substitutions resulted in a >2-fold defect in CSF production, indicating that this position is relatively immune to mutational perturbations. These data revealed residues that direct cleavage of CSF and laid the groundwork for testing whether other Phr peptides are processed in a similar manner.  相似文献   
6.
Parkinson’s disease is characterised by excessive subcortical beta oscillations. However, little is known about the functional connectivity of the two basal ganglia across hemispheres and specifically the role beta plays in this. We recorded local field potentials from the subthalamic nucleus bilaterally in 23 subjects with Parkinson’s disease at rest, on and off medication. We found suppression of low beta power in response to levodopa (t22 = −4.4, p<0.001). There was significant coherence between the two sides in the beta range in 19 of the subjects. Coherence was selectively attenuated in the low beta range following levodopa (t22 = −2.7; p = 0.01). We also separately analysed amplitude co-modulation and phase synchronisation in the beta band and found significant amplitude co-modulation and phase locking values in 17 and 16 subjects respectively, off medication. There was a dissociable effect of levodopa on these measures, with a significant suppression only in low beta phase locking value (t22 = −2.8, p = 0.01) and not amplitude co-modulation. The absolute mean values of amplitude co-modulation (0.40±0.03) and phase synchronisation (0.29±0.02) off medication were, however, relatively low, suggesting that the two basal ganglia networks may have to be approached separately with independent sensing and stimulation during adaptive deep brain stimulation. In addition, our findings highlight the functional distinction between the lower and upper beta frequency ranges and between amplitude co-modulation and phase synchronization across subthalamic nuclei.  相似文献   
7.
Bats were netted at two sites over the forest rivers Narewka and Hwoźna in Białowieża Primeval Forest (E Poland), during the summer of 1994 and 1995. A total of 452 bats of 11 species were captured. The number of bats netted each night was positively correlated with the minimum air temperature. The rate at which the three commonest species —Nyctalus noctula, Myotis daubentonii andNyctalus leisleri — were caught varied significantly through the night, with a major peak after sunset. ForN. noctula air temperature was apparently positively related to the size of the morning peak.  相似文献   
8.
Neurons have a striking tendency to engage in oscillatory activities. One important type of oscillatory activity prevalent in the motor system occurs in the beta frequency band, at about 20 Hz. It is manifest during the maintenance of tonic contractions and is suppressed prior to and during voluntary movement [1], [2], [3], [4], [5], [6] and [7]. This and other correlative evidence suggests that beta activity might promote tonic contraction, while impairing motor processing related to new movements [3], [8] and [9]. Hence, bursts of beta activity in the cortex are associated with a strengthening of the motor effects of sensory feedback during tonic contraction and with reductions in the velocity of voluntary movements [9], [10] and [11]. Moreover, beta activity is increased when movement has to be resisted or voluntarily suppressed [7], [12] and [13]. Here we use imperceptible transcranial alternating-current stimulation to entrain cortical activity at 20 Hz in healthy subjects and show that this slows voluntary movement. The present findings are the first direct evidence of causality between any physiological oscillatory brain activity and concurrent motor behavior in the healthy human and help explain how the exaggerated beta activity found in Parkinson's disease can lead to motor slowing in this illness [14].  相似文献   
9.
Cell-cell communication regulates many important processes in bacteria. Gram-positive bacteria use peptide signals for communication, such as the Phr pentapeptides of Bacillus subtilis. The Phr pentapeptides are secreted with a pro domain that is cleaved to produce an active signalling peptide. To identify the protease(s) involved in production of the mature Phr signalling peptides, we developed assays for detecting cleavage of one of the B. subtilis Phr pentapeptides, CSF, from the proCSF precursor. Using both a cellular and a mass spectrometric approach, we determined that a sigma-H-regulated, secreted, serine protease(s) cleaved proCSF to CSF. Mutants lacking the three proteases that fit these criteria, subtilisin, Epr and Vpr, had a defect in CSF production. Purified subtilisin and Vpr were shown to be capable of processing proCSF as well as at least one other Phr peptide produced by B. subtilis, PhrA, but they were not able to process the PhrE signalling peptide of B. subtilis, indicating that there are probably other unidentified proteases involved in Phr peptide production. Subtilisin, Epr and Vpr are members of the subtilisin family of proteases that are widespread in bacteria, suggesting that many bacterial species may be capable of producing Phr signalling peptides.  相似文献   
10.
Adaptive deep brain stimulation (aDBS) has the potential to improve the treatment of Parkinson''s disease by optimizing stimulation in real time according to fluctuating disease and medication state. In the present realization of adaptive DBS we record and stimulate from the DBS electrodes implanted in the subthalamic nucleus of patients with Parkinson''s disease in the early post-operative period. Local field potentials are analogue filtered between 3 and 47 Hz before being passed to a data acquisition unit where they are digitally filtered again around the patient specific beta peak, rectified and smoothed to give an online reading of the beta amplitude. A threshold for beta amplitude is set heuristically, which, if crossed, passes a trigger signal to the stimulator. The stimulator then ramps up stimulation to a pre-determined clinically effective voltage over 250 msec and continues to stimulate until the beta amplitude again falls down below threshold. Stimulation continues in this manner with brief episodes of ramped DBS during periods of heightened beta power.Clinical efficacy is assessed after a minimum period of stabilization (5 min) through the unblinded and blinded video assessment of motor function using a selection of scores from the Unified Parkinson''s Rating Scale (UPDRS). Recent work has demonstrated a reduction in power consumption with aDBS as well as an improvement in clinical scores compared to conventional DBS. Chronic aDBS could now be trialed in Parkinsonism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号