首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2018年   1篇
  2012年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Many drugs and chemicals found in the environment are either detoxified by N-acetyltransferase 1 (NAT1, EC 2.3.1.5) and eliminated from the body or bioactivated to metabolites that have the potential to cause toxicity and/or cancer. NAT1 activity in the body is regulated by genetic polymorphisms as well as environmental factors such as substrate-dependent down-regulation and oxidative stress. Here we report the molecular mechanism for the low protein expression from mutant NAT1 alleles that gives rise to the slow acetylator phenotype and show that a similar process accounts for enzyme down-regulation by NAT1 substrates. NAT1 allozymes NAT1 14, NAT1 15, NAT1 17, and NAT1 22 are devoid of enzyme activity and have short intracellular half-lives ( approximately 4 h) compared with wild-type NAT1 4 and the active allozyme NAT1 24. The inactive allozymes are unable to be acetylated by cofactor, resulting in ubiquitination and rapid degradation by the 26 S proteasome. This was confirmed by site-directed mutagenesis of the active site cysteine 68. The NAT1 substrate p-aminobenzoic acid induced ubiquitination of the usually stable NAT1 4, leading to its rapid degradation. From this study, we conclude that NAT1 exists in the cell in either a stable acetylated state or an unstable non-acetylated state and that mutations in the NAT1 gene that prevent protein acetylation produce a slow acetylator phenotype.  相似文献   
2.
The mechanisms responsible for the processing and quality control of the calcium‐sensing receptor (CaSR) in the endoplasmic reticulum (ER) are largely unknown. In a yeast two‐hybrid screen of the CaSR C‐terminal tail (residues 865–1078), we identified osteosarcoma‐9 (OS‐9) protein as a binding partner. OS‐9 is an ER‐resident lectin that targets misfolded glycoproteins to the ER‐associated degradation (ERAD) pathway through recognition of specific N‐glycans by its mannose‐6‐phosphate receptor homology (MRH) domain. We show by confocal microscopy that the CaSR and OS‐9 co‐localize in the ER in COS‐1 cells. In immunoprecipitation studies with co‐expressed OS‐9 and CaSR, OS‐9 specifically bound the immature form of wild‐type CaSR in the ER. OS‐9 also bound the immature forms of a CaSR C‐terminal deletion mutant and a C677A mutant that remains trapped in the ER, although binding to neither mutant was favored over wild‐type receptor. OS‐9 binding to immature CaSR required the MRH domain of OS‐9 indicating that OS‐9 acts as a lectin most likely to target misfolded CaSR to ERAD. Our results also identify two distinct binding interactions between OS‐9 and the CaSR, one involving both C‐terminal domains of the two proteins and the other involving both N‐terminal domains. This suggests the possibility of more than one functional interaction between OS‐9 and the CaSR. When we investigated the functional consequences of altered OS‐9 expression, neither knockdown nor overexpression of OS‐9 was found to have a significant effect on CaSR cell surface expression or CaSR‐mediated ERK1/2 phosphorylation.  相似文献   
3.
A yeast two-hybrid screen performed to identify binding partners of the CaR (calcium-sensing receptor) intracellular tail identified the adaptor protein 14-3-3θ as a novel binding partner that bound to the proximal membrane region important for CaR expression and signalling. The 14-3-3θ protein directly interacted with the CaR tail in pull-down studies and FLAG-tagged CaR co-immunoprecipitated with EGFP (enhanced green fluorescent protein)-tagged 14-3-3θ when co-expressed in HEK (human embryonic kidney)-293 or COS-1 cells. The interaction between the CaR and 14-3-3θ did not require a putative binding site in the membrane-proximal region of the CaR tail and was independent of PKC (protein kinase C) phosphorylation. Confocal microscopy demonstrated co-localization of the CaR and EGFP-14-3-3θ in the ER (endoplasmic reticulum) of HEK-293 cells that stably expressed the CaR (HEK-293/CaR cells), but 14-3-3θ overexpression had no effect on membrane expression of the CaR. Overexpression of 14-3-3θ in HEK-293/CaR cells attenuated CaR-mediated Rho signalling, but had no effect on ERK (extracellular-signal-regulated kinase) 1/2 signalling. Another isoform identified from the library, 14-3-3ζ, exhibited similar behaviour to that of 14-3-3θ with respect to CaR tail binding, cellular co-localization and impact on receptor-mediated signalling. However, unlike 14-3-3θ, this isoform, when overexpressed, significantly reduced CaR plasma membrane expression. Results indicate that 14-3-3 proteins mediate CaR-dependent Rho signalling and may modulate the plasma membrane expression of the CaR.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号