首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   1篇
  2021年   1篇
  2020年   3篇
  2019年   6篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有37条查询结果,搜索用时 109 毫秒
1.
Multidrug-resistant tuberculosis (MDR-TB) is caused by bacteria that are resistant to the most effective anti TB drugs (Isoniazid and Rifampicin) with or without resistance to other drugs. Novel intervention strategies to eliminate this disease based on finding proteins can be used for designing new drugs or new and reliable kits for diagnosis. The aim of this study was to compare the protein profile of MDR-TB with sensitive isolates. Two-dimensional gel electrophoresis (2DE) along with mass spectrometry is a powerful and effective tool to identification and characterization of Mycobacterium tuberculosis. Two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used for diagnosis and comparison of proteins. We identified 14 protein spots in MDR-TB isolates that 2DE analysis showed these spots absent in M. tuberculosis sensitive isolates (Rv1876, Rv0379, Rv0147, Rv2031c, Rv3597c, Rv1886c, MT0493, Rv0440, Rv3614c, Rv1626, Rv0443, Rv0475, Rv3057 and unknown protein. The results showed 22 protein spots which were up regulated (or expressed) by the MDR-TB isolates, (Rv1240, Rv3028c, Rv2971, Rv2114c, Rv3311, Rv3699, Rv1023, Rv1308, Rv3774, Rv0831c, Rv2890c, Rv1392, Rv0719, Rv0054, Rv3418c, Rv0462, Rv2215, Rv2986c, Rv3248c and Rv1908c)). Two up regulated protein spots were identified in sensitive isolate (Rv1133c and Rv0685). These data will provide valuable clues in further investigation for suitable TB rapid tests or drug targets against drug resistant and sensitive of M. tuberculosis.  相似文献   
2.
Osteoarthritis (OA) is the most common type of arthritis and no longer is considered as an absolute consequence of joint mechanical use (wear and tear); rather recent data demonstrate the pivotal role of inflammatory mediators in the development and progression of this disease. This multifactorial disease results from several environmental and inherited factors. Genetic cannot solely explain all the contribution share of inheritance and, this way, it is speculated that epigenetics can play a role, too. Moreover, environmental factors can induce local epigenetic changes. The epigenetic contribution to OA pathogenesis occurs at all of its levels, DNA methylation, histone modification, microRNA, and long noncoding RNA. In fact, during early phases of OA pathogenesis, environmental factors employ epigenetic mechanisms to provide a positive feedback for the OA-related pathogenic mechanisms and pathways with an ultimate outcome of a well-established clinical OA. These epigenetic changes stay during clinical disease and prevent the body natural healing and regenerative processes to work properly, resulting in an incurable disease condition. In this review article, we aimed to have an overview on the studies performed with regard to understanding the role of epigenetics in the etiopathogenesis of OA and highlighted the importance of such kind of regulatory mechanisms within this context.  相似文献   
3.
Human influenza A viruses (IAVs) cause global pandemics and epidemics, which remains a nonignorable serious concern for public health worldwide. To combat the surge of viral outbreaks, new treatments are urgently needed. Here, we design a new vaccine based on virus-like particles (VLPs) and show how intranasal administration of this vaccine triggers protective immunity, which can be exploited for the development of new therapies. H1N1 VLPs were produced in baculovirus vectors and were injected into BALB/c mice by the intramuscular (IM) or intranasal (IN) route. We found that there were significantly higher inflammatory cell and lymphocyte concentrations in bronchoalveolar lavage samples and the lungs of IN immunized mice; however, the IM group had little signs of inflammatory responses. On the basis of our results, immunization with H1N1 influenza VLP elicited a strong T cell immunity in BALB/c mice. Despite T cell immunity amplification after both IN and IM vaccination methods in mice, IN-induced T cell responses were significantly more intense than IM-induced responses, and this was likely related to an increased number of both CD11bhigh and CD103+ dendritic cells in mice lungs after IN administration of VLP. Furthermore, evaluation of interleukin-4 and interferon gamma cytokines along with several chemokine receptors showed that VLP vaccination via IN and IM routes leads to a greater CD4+ Th1 and Th2 response, respectively. Our findings indicated that VLPs represent a potential strategy for the development of an effective influenza vaccine; however, employing relevant routes for vaccination can be another important part of the universal influenza vaccine puzzle.  相似文献   
4.
5.
The aim of this study was to investigate the frequency, location and type of rpoB mutations in Mycobacterium tuberculosis isolated from patients in Belarus. Tuberculosis cases are increasing every year in Belarus. Moreover, resistance to anti-tuberculosis drugs, especially to rifampicine, has increased. In this study, 44 rifampicine-resistance M. tuberculosis clinical isolates (including multidrug-resistant isolates) were subjected to DNA sequencing analysis of the hypervariable region (hot-spot) of the rpoB gene originating from different geographical regions in Belarus. Sixteen different types of mutations were identified. The most common point mutations were in codons 510 (47.7%), 526 (45.5%), 523 (40.86%) and 531 (29.5%). Eleven isolates (27.7%) carried one mutation and 23 (52%), 7 (16%), 3 (7%) of isolates carried 2, 3 and 4 mutations, respectively. A characteristic, prominent finding of this study was high frequency of multiple mutations in different codons of the rpoB gene (27.7%) and also the detection of unusual types of mutations in the 510 codon, comprising CAG mutations (deletion or changing, to CTG, CAC or CAT). In our study, the change TTG in codon 531 was found in 92% of isolates and the change TGC in 8% of isolates. A TAC change in codon 526 was not found, but the GAC change was found in all isolates. Isolates of M. tuberculosis isolated in Belarus were characterized by the wide spectrum of the important mutations and might belong to the epidemic widespread clones.  相似文献   
6.
The molecular mechanisms that regulate the endothelial response during transendothelial migration (TEM) of invasive cancer cells remain elusive. Tyrosine phosphorylation of vascular endothelial cadherin (VE-cad) has been implicated in the disruption of endothelial cell adherens junctions and in the diapedesis of metastatic cancer cells. We sought to determine the signaling mechanisms underlying the disruption of endothelial adherens junctions after the attachment of invasive breast cancer cells. Attachment of invasive breast cancer cells (MDA-MB-231) to human umbilical vein endothelial cells induced tyrosine phosphorylation of VE-cad, dissociation of β-catenin from VE-cad, and retraction of endothelial cells. Breast cancer cell-induced tyrosine phosphorylation of VE-cad was mediated by activation of the H-Ras/Raf/MEK/ERK signaling cascade and depended on the phosphorylation of endothelial myosin light chain (MLC). The inhibition of H-Ras or MLC in endothelial cells inhibited TEM of MDA-MB-231 cells. VE-cad tyrosine phosphorylation in endothelial cells induced by the attachment of MDA-MB-231 cells was mediated by MDA-MB-231 α2β1 integrin. Compared with highly invasive MDA-MB-231 breast cancer cells, weakly invasive MCF-7 breast cancer cells expressed lower levels of α2β1 integrin. TEM of MCF-7 as well as induction of VE-cad tyrosine phosphorylation and dissociation of β-catenin from the VE-cad complex by MCF-7 cells were lower than in MDA-MB-231 cells. These processes were restored when MCF-7 cells were treated with β1-activating antibody. Moreover, the response of endothelial cells to the attachment of prostatic (PC-3) and ovarian (SKOV3) invasive cancer cells resembled the response to MDA-MB-231 cells. Our study showed that the MDA-MB-231 cell-induced disruption of endothelial adherens junction integrity is triggered by MDA-MB-231 cell α2β1 integrin and is mediated by H-Ras/MLC-induced tyrosine phosphorylation of VE-cad.  相似文献   
7.
Vascular endothelial cadherin (VE-cad) tyrosine (Tyr) phosphorylation has been implicated in the disruption of adherens junctions (AJs) induced by inflammatory reactions. The impacts of statins on integrity of AJs and VE-cad Tyr phosphorylation have not been explored. The effects of atorvastatin on IL-1β and monocyte-induced VE-cad Tyr phosphorylation in human umbilical vein endothelial cells (ECs) were studied. In ECs treated with interleukin (IL)-1β for 30 min, VE-cad Tyr phosphorylation, dissociation of the VE-cad/β-catenin complex and transendothelial migration (TEM) of monocytes were increased. These processes were mediated by activation of HRas and RhoA that leads to phosphorylation of myosin light chain (MLC). Atorvastatin inhibited IL-1β-induced Tyr phosphorylation of VE-cad by inhibiting RhoA and by dephosphorylating MLC. The attenuating effect of atorvastatin on VE-cad Tyr phosphorylation was reversed when RhoA was activated or MLC phosphatase was inhibited. Furthermore, inhibiting farnesyl transferase or geranylgeranyl transferase reproduced the inhibitory effects of atorvastatin on VE-cad Tyr phosphorylation. In addition, atorvastatin inhibited monocyte-induced VE-cad Tyr phosphorylation in ECs and attenuated IL-1β-induced TEM of monocytes. Our study introduces a novel pleiotropic effect of atorvastatin and suggests that statins protect the integrity of AJs in ECs by inhibiting RhoA-mediated Tyr phosphorylation of VE-cad.  相似文献   
8.
Computational evaluation of ligand-receptor binding via docking strategy is a well established approach in structure-based drug design. This technique has been applied frequently in developing molecules of biological interest. However, any procedure would require an optimization set up to be more efficient, economic and time-saving. Advantages of modern statistical optimization methods over conventional one-factor-at-a-time studies have been well revealed. The optimization by experimental design provides a combination of factor levels simultaneously satisfying the requirements considered for each of the responses and factors. In this study, response surface method was applied to optimize the prominent factors (number of genetic algorithm runs, population size, maximum number of evaluations, torsion degrees for ligand and number of rotatable bonds in ligand) in AutoDock4.2-based binding study of small molecule β-secretase inhibitors as anti-alzheimer agents. Results revealed that a number of rotatable bonds in ligand and maximum number of docking evaluations were determinant variables affecting docking outputs. The interference between torsion degrees for ligand and number of genetic algorithm runs for docking procedure was found to be the significant interaction term in our model. Optimized docking outputs exhibited a high correlation with experimental fluorescence resonance energy transfer-based IC(50)s for β-secretase inhibitors (R(2)?=?0.9133).  相似文献   
9.
10.

Background

Neutralization of vascular endothelial growth factor receptor 1 (VEGFR1) and/or VEGFR2 is a widely used means of inhibiting tumor angiogenesis.

Methods

Based on the complex X-ray structures of VEGFA/VEGFR1, VEGFA/VEGFR2, and VEGFB/VEGFR1, a peptide (referred to as VGB) was designed to simultaneously bind to VEGFR1 and VEGFR2, and binding, antiangiogenic and antitumor properties of the peptide was investigated in vitro.

Results

VGB bound to both VEGFR1 and VEGFR2 in human umbilical vein endothelial cells (HUVECs) and 4?T1 mammary carcinoma tumor (MCT) cells, and inhibited the proliferation of HUVE, 4?T1 MCT, and U87 glioblastoma cells. Through abrogation of AKT and ERK1/2 phosphorylation, VEGFA-stimulated proliferation, migration, and two- and three-dimensional tube formation in HUVECs were inhibited more potently by VGB than by bevacizumab. In a murine 4?T1 MCT model, VGB strongly inhibited tumor growth without causing weight loss, accompanied by inhibition of AKT and ERK1/2 phosphorylation, a significant decrease in tumor cell proliferation (Ki-67 expression), angiogenesis (CD31 and CD34 expression), an increase in apoptosis index (increased TUNEL staining and p53 expression and decreased Bcl-2 expression), and the suppression of systematic spreading of the tumor (reduced NF-κB and MMP-9 and increased E-cadherin expression).

Conclusion

The dual specificity of VGB for VEGFR1 and VEGFR2, through which the PI3K/AKT and MAPK/ERK1/2 signaling pathways can be abrogated and, subsequently, angiogenesis, tumor growth, and metastasis are inhibited.

General significance

This study demonstrated that simultaneous blockade of VEGFR1 and VEGFR2 downstream cascades is an effective means for treatment of various angiogenic disorders, especially cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号