首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   9篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2008年   1篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   6篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
排序方式: 共有91条查询结果,搜索用时 31 毫秒
1.
P700 is rapidly, but only transiently photooxidized upon illuminating dark-adapted leaves. Initial oxidation is followed by a reductive phase even under far-red illumination which excites predominantly photosystem (PS) I. In this phase, oxidized P700 is reduced by electrons coming from PSII. Charge separation in the reaction center of PSI is prevented by the unavailability of electron acceptors on the reducing side of PSI. It is subsequently made possible by the opening of an electron gate which is situated between PSI and the electron acceptor phosphoglycerate. Electron acceptors immediately available for reduction while the gate is closed corresponded to 10 nmol · (mg chlorophyll)–1 electrons in geranium leaves, 16 nmol · (mg chlorophyll)–1 in sunflower and 22 nmol · (mg chlorophyll)–1 in oleander. Reduction of NADP during the initial phase of P700 oxidation showed that the electron gate was not represented by ferredoxin-NADP reductase. Availability of ATP indicated that electron flow was not hindered by deactivation of the thylakoid ATP synthetase. It is concluded that NADP-dependent glyceraldehydephosphate dehydrogenase is completely deactivated in the dark and activated in the light. The rate of activation depends on the length of the preceding dark period. As chloroplasts contain both NAD- and NADP-dependent glyceraldehydephosphate dehydrogenases, deactivation of the NADP-dependent enzyme disconnects chloroplast NAD and NADP systems and prevents phosphoglycerate reduction in the dark at the expense of NADPH and ATP which are generated by glucose-6-phosphate oxidation and glycolytic starch breakdown, respectively.Abbreviations Chl chlorophyll - P700 electron donor pigment in the reaction center of photosystem I Cooperation of the Institute of Botany of the University of Würzburg with the Institute of Astrophysics and Atmospheric Physics of the Estonian Academy of Sciences in Tartu was supported by the Deutsche Forschungsgemeinschaft and the Estonian Academy of Sciences. This work was performed within the Sonderforschungsbereich 251 of the University of Würzburg.  相似文献   
2.
Oscillations in the rate of photosynthesis of sunflower (Helianthus annuus L.) leaves were induced by subjecting leaves, whose photosynthetic apparatus had been activated, to a sudden transition from darkness or low light to high-intensity illumination, or by transfering them in the light from air to an atmosphere containing saturating CO2. It was found that at the first maximum, light-and CO2-saturated photosynthesis can be much faster than steady-state photosynthesis. Both QA in the reaction center of PS II and P700 in the reaction center of PS I of the chloroplast electron-transport chain were more oxidized during the maxima of photosynthesis than during the minima. Maxima of P700 oxidation slightly preceded maxima in photosynthesis. During a transition from low to high irradiance, the assimilatory force FA, which was calculated from ratios of dihydroxyacetone phosphate to phosphoglycerate under the assumption that the reactions catalyzed by NADP-dependent glyceraldehydephosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase are close to equilibrium, oscillated in parallel with photosynthesis. However, only one of its components, the calculated phosphorylation potential (ATP)/(ADP)(Pi), paralleled photosynthesis, whereas calculated NADPH/NADP ratios exhibited antiparallel behaviour. When photosynthetic oscillations were initiated by a transition from low to high CO2, the assimilatory force FA declined, was very low at the first minimum of photosynthesis and increased as photosynthesis rose to its second maximum. The observations indicate that the minima in photosynthesis are caused by lack of ATP. This leads to overreduction of the electron-transport chain which is indicated by the reduction of P700. During photosynthetic oscillations the chloroplast thylakoid system is unable to adjust the supply of ATP and NADPH rapidly to demand at the stoichiometric relationship required by the carbonreduction cycle.Abbreviations PGA 3-phosphoglycerate - DHAP dihydroxyacetone phosphate - P700 electron-donor pigment in the reaction enter of PS I - QA quinone acceptor in the reaction center of PS II This work received support from the Estonian Academy of Sciences, the Bavarian Ministry of Science and Art and the Sonderforschungsbereich 251 of the University of Würzburg. We are grateful for criticism by D.A. Walker, Robert Hill Institute, University of Sheffield, U.K. and by Mark Stitt, Institute of Botany, University of Heidelberg, FRG.  相似文献   
3.
K. Siebke  A. Laisk  V. Oja  O. Kiirats  K. Raschke  U. Heber 《Planta》1990,182(4):513-522
The rapid transients of CO2 gas exchange have been measured in leaves ofHelianthus annuus L. In parallel experiments the assimilatory force FA, which is the product of the phosphorylation potential and the redox ratio NADPH/NADP, has been calculated from measured ratios of dihydroxyacetone phosphate to phosphoglycerate in the chloroplast stroma and in leaves. The following results were obtained: (i) When the light-dependent stroma alkalization was measured under steady-state conditions for photosynthesis in air containing 2000 μl · l-1 CO2, alkalization increased with photosynthesis as the quantum flux density (irradiance) was increased. This contrasts to the light-dependent stroma alkalisation measured in dark-adapted leaves during the dark-light transient (Laisk et al. 1989, Planta177, 350–358) which reached a maximum at a quantum flux density far below that necessary to saturate photosynthesis. This maximum was about three times higher than the maximum stroma alkalization at light- and CO2-saturated photosynthesis. (ii) Accurate calculations of the assimilatory force FA require a consideration of the stromal pH. However, under many conditions, changes in the stromal pH resulting from changes in photosynthetic flux can be neglected because they are small. (iii) Stromal ratios of dihydroxyacetone phosphate to phosphoglycerate are generally lower than ratios measured in leaf extracts. The value of FA calculated from stromal metabolites was about 30% lower than FA calculated from cellular metabolites. Still, it appears sufficient for many purposes to calculate FA from metabolite measurements in leaf extracts. (iv) In the light, the catalytic capacity of the photosynthetic apparatus is adjusted to the level of irradiance. The response of carbon assimilation to large increases in irradiance is slow because it requires enzyme activation. Deactivation of the Calvin cycle induced by decreases in irradiance is slower than activation. (v) Changes in catalytic capacity and in the availability or level of substrates such as CO2 alter the flux resistance of the Calvin cycle. A decrease in flux resistance explains why FA often does not increase by much and may actually decrease when carbon flux is increased. Adjustments of flux resistances in the Calvin cycle and of photosystem-II activity in the electron-transport chain permit varying rates of photosynthesis at low levels of ATP and NADPH. As NADP remains available, the danger of over-reduction which leads to photoinactivation of electron transport is minimized. K.R. und U.H. were guests of the Estonian Academy of Sciences. Support by the Estonian Academy of Sciences, the Sonderforschungsbereich 251 of the University of Würzburg and the Fonds der Chemischen Industrie is gratefully acknowledged.  相似文献   
4.
The kinetics of the postillumination reduction of P700+ which reflects the rate constant for plastoquinol (PQH2) oxidation was recorded in sunflower leaves at different photon absorption densities (PAD), CO2 and O2 concentrations. The P700 oxidation state was calculated from the leaf transmittance at 830 nm logged at 50 s intervals. The P700+ dark reduction kinetics were fitted with two exponents with time constants of 6.5 and about 45 ms at atmospheric CO2 and O2 concentrations. The time constant of the fast component, which is the major contributor to the linear electron transport rate (ETR), did not change over the range of PADs of 14.5 to 134 nmol cm-2 s-1 in 21% O2, but it increased up to 40 ms under severe limitation of ETR at low O2 and CO2. The acceptor side of Photosystem I (PS I) became reduced in correlation with the downregulation of the PQH2 oxidation rate constant. It is concluded that thylakoid pH-related downregulation of the PQH2 oxidation rate constant (photosynthetic control) is not present under normal atmospheric conditions but appears under severe limitation of the availability of electron acceptors. The measured range of photosynthetic control fits with the maximum variation of ETR under natural stress in C3 plants. Increasing the carboxylase/oxygenase specificity would lead to higher reduction of the PS I acceptor side under stress.Abbreviations Cyt b 6 f cytochrome b 6 f complex - Cw cell-wall CO2 concentration, M - ETR electron transport rate - Fd ferredoxin - FNR ferredoxin-NADP reductase - FRL far-red light - PC plastocyanin - PAD photon absorption density nmol cm-2 s-1 - PFD photon flux density nmol cm-2 s-1 - PS I Photosystem I complex - PQ plastoquinon - PQH2 plastoquinol - PS II Photosystem II complex - P700 Photosystem I donor pigment, reduced - S830 830 nm signal (D830, difference of S830 from the dark level) - WL white light - Yl maximum quantum yield of PS I electron transport, rel. un  相似文献   
5.
High-ethanol-resistant yeasts, characterized as Saccharomyces sp., were isolated from Nigerian palm wine with added sucrose for high gravity brewing. The yeast isolates that survived the highest ethanol production were used to ferment brewery wort and produced 8.2 to 8.5% (v/v) ethanol; values almost double that of the control yeast from a local brewery.  相似文献   
6.
Single unit recording and micropressure ejection techniques were used to investigate the actions of opiates on dopaminergic and non-dopaminergic neurons in the rat substantia nigra. Systemic administration of morphine, 1 to 4 mg/kg, led to a naloxone-reversible increase in firing rate of all zona compacta dopaminergic (ZC) neurons examined (n=10). In a specifically defined subpopulation of non-dopaminergic nigral zona reticulata (ZR) neurons, systemically administered morphine led to a naloxone reversible decrease in activity (n=9). D-Ala2-d-leu5 (DADL)-enkephalin, when applied directly onto ZC neurons by micropressure ejection techniques, had no effect on their firing rate. In contrast, micropressure ejection of DADL enkephalin onto ZR neurons produced a decrease in firing rate which was blocked by systemically administered naloxone. Morphine sulfate applied by pressure ejection onto both ZC and ZR neurons produced mixed results which were not always blocked by naloxone. These results suggest that one of the mechanisms by which opiates increase dopaminergic neurotransmission is through disinhibition of dopaminergic neurons in the substantia nigra.  相似文献   
7.
Agu Pert  Marc Walter 《Life sciences》1976,19(7):1023-1032
Comparisons were made between the efficacy of naloxone to reverse analgesia induced by electrical stimulation (SPA) of the periaqueductal gray matter and analgesia induced by microinjections of morphine into the same brain region. Naloxone at 1 or 10 mg/kg was ineffective in antagonizing SPA during the first two minutes post-stimulation. Although some antagonism did appear 3–5 minutes after stimulation, the effect was neither consistent nor dose-dependent. Morphine, on the other hand, was antagonized in a dose-dependent and complete fashion by naloxone. The assumption that similar mechanisms underlie both opiate and electrical stimulation induced analgesia is discussed.  相似文献   
8.
9.
Unilateral amygdala electrodes were implanted in male Sprague-Dawley rats stimulated once daily with a 200 μamp pulse of 500 millisecond duration to produce kindling. Forty-six percent (12 of 26) of the animals that eventually developed after-discharges demonstrated rhythmic oscillations in after-discharge duration. The presence or absence of generalized bilateral clonic seizures also showed rhythmic oscillations in close association with after-discharge duration. It is suggested that during kindling some animals, independent of electrode placement, develop rhythmic oscillations in excitability of the amygdala. This model may represent a means of experimentally eliciting or uncovering neuronal substrates which show regular alterations in excitability and may be relevant to the oscillations in mood and behavior observed in the affective disorders.  相似文献   
10.
Chl fluorescence induction (FI) was recorded in sunflower leaves pre-adapted to darkness or low preferentially PSI light, or inhibited by DCMU. For analysis the FI curves were plotted against the cumulative number of excitations quenched by PSII, n q, calculated as the cumulative complementary area above the FI curve. In the +DCMU leaves n q was <1 per PSII, suggesting pre-reduction of Q A during the dark pre-exposure. A strongly sigmoidal FI curve was constructed by complementing (shifting) the recorded FI curves to n q = 1 excitation per PSII. The full FI curve in +DCMU leaves was well fitted by a model assuming PSII antennae are excitonically connected in domains of four PSII. This result, obtained by gradually reducing Q A in PSII with pre-blocked Q B (by DCMU or PQH2), differs from that obtained by gradually blocking the Q B site (by increasing DCMU or PQH2 level) in leaves during (quasi)steady-state e? transport (Oja and Laisk, Photosynth Res 114, 15–28, 2012). Explanations are discussed. Donor side quenching was characterized by comparison of the total n q in one and the same dark-adapted leaf, which apparently increased with increasing PFD during FI. An explanation for the donor side quenching is proposed, based on electron transfer from excited P680* to oxidized tyrosine Z (TyrZox). At high PFDs the donor side quenching at the J inflection of FI is due mainly to photochemical quenching by TyrZox. This quenching remains active for subsequent photons while TyrZ remains oxidized, following charge transfer to Q A. During further induction this quenching disappears as soon as PQ and Q A become reduced, charge separation becomes impossible and TyrZ is reduced by the water oxidizing complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号