首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   24篇
  国内免费   1篇
  2021年   8篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   8篇
  2015年   11篇
  2014年   15篇
  2013年   21篇
  2012年   20篇
  2011年   17篇
  2010年   10篇
  2009年   8篇
  2008年   9篇
  2007年   13篇
  2006年   7篇
  2005年   17篇
  2004年   8篇
  2003年   9篇
  2002年   7篇
  2001年   6篇
  2000年   9篇
  1999年   10篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1994年   2篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   4篇
  1989年   12篇
  1988年   2篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1981年   5篇
  1980年   1篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1975年   1篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1967年   3篇
  1965年   1篇
排序方式: 共有317条查询结果,搜索用时 15 毫秒
1.
2.
Using recombinant tetanus toxin HC fragment (rTT-HC) as carrier, we prepared multimeric bivalent immunogens featuring the synthetic hexasaccharide fragment of O-PS of Vibrio cholerae O:1, serotype Ogawa, in combination with either the synthetic hexasaccharide fragment of O-PS of Vibrio cholerae O:1, serotype Inaba, or a synthetic disaccharide tetrapeptide peptidoglycan fragment as adjuvant. The conjugation reaction was effected by squaric acid chemistry and monitored in virtually real time by SELDI-TOF MS. In this way, we could prepare well-defined immunogens with predictable carbohydrate–carrier ratio, whose molecular mass and the amount of each saccharide attached could be independently determined. The ability to prepare such neoglycoconjugates opens unprecedented possibilities for preparation of conjugate vaccines for bacterial diseases from synthetic carbohydrates.  相似文献   
3.
Studies from multiple laboratories with a range of methods raised the possibility that insulin production occurs naturally at extrapancreatic sites. Part A covers the presence of insulin-related materials in organisms that do not have an endocrine pancreas, including unicellular prokaryotes and eukaryotes as well as multicellular non-vertebrate animals (insects et al.) and plants. Part B covers possible production of insulin by extrapancreatic tissues of vertebrates that are remote from a source of pancreatic insulin e.g. early chick embryos and mammalian cells in culture. Part C covers possible extrapancreatic insulin production in mammals in vivo. Each section ends with an outline summary with evidence in favor of and against the hypothesis.  相似文献   
4.
Acetylcholine treatment of [3H]inositol pre-labelled cultured chick embryo myotubes results in the stimulation of phosphatidylinositol breakdown, as shown by the measurement of inositol-1-phosphate accumulating in the presence of lithium. The described effect is dependent on agonist concentration and incubation time, and is inhibited by tubocurarine and alpha-bungarotoxin. The activation of phosphatidylinositol breakdown by acetylcholine at extrajunctional nicotinic receptors is likely to be involved in the modulation of the functional activity of the receptor.  相似文献   
5.
The developmental regulation of rat brain-derived/Hep G2 glucose transporter gene expression was studied by means of Northern blot hybridization, using a rat brain glucose transporter cDNA probe, in order to directly quantify steady state glucose transporter mRNA levels. The results obtained showed different tissue-specific patterns of glucose transporter mRNA levels during ontogenesis; while in brain there was a sustained increase in the levels of the message from 20 days embryogenesis until 50 days postnatal, other organs such as heart, lung, liver, and muscle expressed maximal levels of the glucose transporter mRNA in 20-day fetuses and 1-day neonates, decreasing subsequently to very low levels. The relative expression of the glucose transporter mRNA in the different tissues, at both fetal and adult stages, was analyzed using a solution hybridization-RNase protection assay. This approach revealed that, while the heart expresses the highest levels of glucose transporter mRNA at 20 days of fetal life, the brain shows the highest levels at the adult stage. These results indicate a tissue-specific ontogenic pattern of glucose transporter gene expression, suggesting a developmental role for this glucose transporter gene product.  相似文献   
6.
7.
Spontaneously transformed mouse fibroblasts (Balb/c 3T12-3 cells) displayed an increased adhesion when cultured in the presence of 10(-6) M all-trans retinol and acquired morphological characteristics of the normal phenotype. Thus it was of interest to investigate the metabolism of [15-(14)C]retinol in this system. Within 24 hours of culture, approximately 4.25% of the [(14)C]retinol was taken up by the cells. The hydrocarbon [(14)C]anhydroretinol was a major metabolic product and was identified by gas-liquid chromatography and by its typical ultraviolet absorption spectrum with maxima at 386, 364, and 346 nm. At 24 and 40 hours anhydroretinol represented 27% and 55%, respectively, of the total nonpolar metabolites or approximately 16% and 30% of the total radioactive products. Formalin-fixed fibroblasts or cultured intestinal mucosal cells did not convert retinol into anhydroretinol. A more polar product with a UV absorption maximum at 310 nm was also found. The time course of the synthesis of this product by 3T12 cells suggested a precursor-product relationship with anhydroretinol. A microsomal preparation from 3T12 cells was also active in synthesizing [(14)C]anhydroretinol and [(14)C]metabolite-310 from [(14)C]retinol. Moreover incubation of metabolite-310 with the 3T12 microsomes yielded anhydroretinol (40% conversion in 30 minutes), suggesting that metabolite-310 is an intermediate in the synthesis of anhydroretinol by these cells. Anhydroretinol appears to be an end product of the metabolism of retinol in 3T12-3 cells, as suggested by the finding that over 90% of [(14)C]anhydroretinol incubated for 30 hours with 3T12-3 cells was recovered unaltered, without the formation of detectable retroretinol, retinol, or retinoic acid.-Bhat, P. V., L. M. De Luca, S. Adamo, I. Akalovsky, C. S. Silverman-Jones, and G. L. Peck. Retinoid metabolism in spontaneously transformed mouse fibroblasts (Balb/c 3T12-3 cells): enzymatic conversion of retinol to anhydroretinol.  相似文献   
8.
9.
A simple and rapid radiochemical method for the determination of N-acetyl-L-aspartic acid amidohydrolase (EC 3.5.1.15) activity using ion exchange chromatography has been developed. The activity of this enzyme in the developing brain and some non-nervous tissues of the chicken has been determined. No activity of the enzyme could be detected in the brains of chick embroys prior to 14 days of gestation; activities gradually increased thereafter to adult levels which are about 60% of that found in the adult rat. In non-nervous system tissues of the adult chicken, activities varied from high levels in the kidney to low levels in heart and breast muscle. Treatment of the homogenates of the adult tissues with a detergent significantly increased the enzyme activity, suggesting that a portion of the enzyme is membrane bound.  相似文献   
10.
The objective of this study was to determine whether cells in G(0) phase are functionally distinct from those in G(1) with regard to their ability to respond to the inducers of DNA synthesis and to retard the cell cycle traverse of the G(2) component after fusion. Synchronized populations of HeLa cells in G(1) and human diploid fibroblasts in G(1) and G(0) phases were separately fused using UV-inactivated Sendai virus with HeLa cells prelabeled with [(3)H]ThdR and synchronized in S or G(2) phases. The kinetics of initiation of DNA synthesis in the nuclei of G(0) and G(1) cells residing in G(0)/S and G(1)/S dikaryons, respectively, were studied as a function of time after fusion. In the G(0)/G(2) and G(1)/G(2) fusions, the rate of entry into mitosis of the heterophasic binucleate cells was monitored in the presence of Colcemid. The effects of protein synthesis inhibition in the G(1) cells, and the UV irradiation of G(0) cells before fusion, on the rate of entry of the G(2) component into mitosis were also studied. The results of this study indicate that DNA synthesis can be induced in G(0)nuclei after fusion between G(0)- and S-phase cells, but G(0) nuclei are much slower than G(1) nuclei in responding to the inducers of DNA synthesis because the chromatin of G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells differ from G(1) cells with regard to their effects on the cell cycle progression of the G(2) nucleus into mitosis. This difference between G(0) and G(1) cells appears to depend on certain factors, probably nonhistone proteins, present in G(1) cells but absent in G(0) cells. These factors can be induced in G(0) cells by UV irradiation and inhibited in G(1) cells by cycloheximide treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号