首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   42篇
  2023年   3篇
  2021年   3篇
  2020年   7篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   8篇
  2013年   16篇
  2012年   8篇
  2011年   8篇
  2010年   8篇
  2009年   14篇
  2008年   12篇
  2007年   11篇
  2006年   9篇
  2005年   12篇
  2004年   6篇
  2003年   15篇
  2002年   11篇
  2001年   9篇
  2000年   9篇
  1999年   4篇
  1998年   5篇
  1997年   5篇
  1996年   3篇
  1994年   3篇
  1993年   3篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   6篇
  1988年   7篇
  1987年   8篇
  1986年   7篇
  1985年   8篇
  1984年   5篇
  1983年   7篇
  1982年   11篇
  1980年   4篇
  1979年   6篇
  1977年   7篇
  1972年   2篇
  1971年   6篇
  1969年   6篇
  1968年   2篇
  1967年   2篇
  1934年   2篇
  1930年   2篇
排序方式: 共有354条查询结果,搜索用时 712 毫秒
1.
2.
Identifying protein–protein and other proximal interactions is central to dissecting signaling and regulatory processes in cells. BioID is a proximity-dependent biotinylation method that uses an “abortive” biotin ligase to detect proximal interactions in cells in a highly reproducible manner. Recent advancements in proximity-dependent biotinylation tools have improved efficiency and timing of labeling, allowing for measurement of interactions on a cellular timescale. However, issues of size, stability, and background labeling of these constructs persist. Here we modified the structure of BioID2, derived from Aquifex aeolicus BirA, to create a smaller, highly active, biotin ligase that we named MicroID2. Truncation of the C terrminus of BioID2 and addition of mutations to alleviate blockage of biotin/ATP binding at the active site of BioID2 resulted in a smaller and highly active construct with lower background labeling. Several additional point mutations improved the function of our modified MicroID2 construct compared with BioID2 and other biotin ligases, including TurboID and miniTurbo. MicroID2 is the smallest biotin ligase reported so far (180 amino acids [AAs] for MicroID2 versus 257 AAs for miniTurbo and 338 AAs for TurboID), yet it demonstrates only slightly less labeling activity than TurboID and outperforms miniTurbo. MicroID2 also had lower background labeling than TurboID. For experiments where precise temporal control of labeling is essential, we in addition developed a MicroID2 mutant, termed lbMicroID2 (low background MicroID2), that has lower labeling efficiency but significantly reduced biotin scavenging compared with BioID2. Finally, we demonstrate utility of MicroID2 in mass spectrometry experiments by localizing MicroID2 constructs to subcellular organelles and measuring proximal interactions.  相似文献   
3.
This study was designed to determine the changes that occur in the thermoregulatory ability of the immature rat repeatedly exposed to low-level microwave radiation. Beginning at 6-7 days of age, previously untreated rats were exposed to 2,450-MHz continuous-wave microwaves at a power density of 5 mW/cm2 for 10 days (4 h/day). Microwave and sham (control) exposures were conducted at ambient temperatures (Ta) which represent different levels of cold stress for the immature rat (ie, "exposure" Ta = 20 and 30 degrees C). Physiological tests were conducted at 5-6 and 16-17 days of age, in the absence of microwaves, to determine pre- and postexposure responses, respectively. Measurements of metabolic rate, colonic temperature, and tail skin temperature were made at "test" Ta = 25.0, 30.0, 32.5, and 35.0 degrees C. Mean growth rates were lower for rats exposed to Ta = 20 degrees C than for those exposed to Ta = 30 degrees C, but microwave exposure exerted no effect at either exposure Ta. Metabolic rates and body temperatures of all exposure groups were similar to values for untreated animals at test Ta of 32.5 degrees C and 35.0 degrees C. Colonic temperatures of rats repeatedly exposed to sham or microwave conditions at exposure Ta = 20 degrees C or to sham conditions at exposure Ta = 30 degrees C were approximately 1 degrees C below the level for untreated animals at test Ta of 25.0 degrees C and 30.0 degrees C. However, when the exposure Ta was warmer, rats exhibited a higher colonic temperature at these cold test Ta, indicating that the effectiveness of low-level microwave treatment to alter thermoregulatory responses depends on the magnitude of the cold stress.  相似文献   
4.
The prenyltransferase involved in the biosynthesis of dolichyl phosphate has been characterized in Saccharomyces cerevisiae. Although the enzyme is predominantly membrane-bound, a significant percentage was found in the soluble fraction. The prenyltransferase preferentially utilizes farnesyl pyrophosphate as the allylic substrate and isopentenyl pyrophosphate as cosubstrate with half-maximal velocities obtained at 25 and 6.7 microM, respectively. The enzymatic activity is sensitive to sulfhydryl reagents and is inhibited by all detergents tested, except 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate at concentrations less than 5 mM. The product of the reaction has been characterized as an alpha-unsaturated polyprenyl pyrophosphate, containing 12-15 isoprene units, approximately two isoprene units shorter than the endogenous yeast dolichyl phosphate. The stereochemistry of addition of isoprene units by the prenyltransferase was shown to be cis by a comparison of the HPLC retention time for a pentadecaprenyl phosphate derived from the in vitro reaction product with that for an authentic mixture of alpha-cis- and alpha-trans-pentadecaprenyl phosphates.  相似文献   
5.
Characterization of dolichyl diphosphate phosphatase from rat liver   总被引:1,自引:0,他引:1  
Dolichyl diphosphate phosphatase (DolPPase) has been characterized in rat liver. Subcellular distribution studies indicate that the enzyme is localized in the endoplasmic reticulum. The in vitro enzymatic activity is stimulated by EDTA, due to release of inhibition by trivalent cations found in the assay tubes. All di- and trivalent cations tested were inhibitory, with the trivalent ions Al3+ and Fe3+ showing greater than 70% inhibition at a concentration of 10 microM. The assay requires the presence of a detergent for optimal activity, with Triton X-100 giving maximum activity at 0.1%. The substrate specificity of DolPPase toward polyprenyl diphosphates has been determined and indicates that there is little preference of the enzyme for substrates of different chain length, and either stereochemical orientation or degree of saturation of the alpha-isoprene unit. Km values of 11-14 microM were obtained for all substrates tested. Preliminary studies on the transmembrane topology of the DolPPase using latency assays, indicate that the active site of the enzyme may reside on the cytoplasmic face of the endoplasmic reticulum.  相似文献   
6.
The formation of DNA adducts by the ultimate carcinogen 7r,8t-dihydroxy-9t,10t-oxy-7,8,9,10-tetrahydrobenzo[alpha]pyrene (BPDE-I) has been implicated in the process of carcinogenesis. In a line of Chinese hamster ovary (CHO) cells designated AT3-2 and in two derivative mutant lines, UVL-1 and UVL-10, originally selected for hypersensitivity to UV-irradiation, we have measured the formation of BPDE-I: DNA adducts and the production of biological damage. The quantity and quality of BPDE-I: DNA adducts formed initially in the 3 cell lines are identical over a wide range of BPDE-I doses. However, the UVL lines are unable to remove adducts from their DNA, while the AT3-2 cells remove about 50% of the BPDE-I: DNA adducts in a 24-h incubation. Correlated with this, the UVL lines are more sensitive to the lethal effects of BPDE-I than are the AT3-2 cells. Mutant frequencies were measured at the aprt, hprt and oua loci and were found to increase linearly with BPDE-I: DNA adduct formation at doses which gave greater than 50% survival. At the hprt and oua loci, the efficiency of mutation induction was similar for AT3-2 and UVL-10 cells. UVL-1 cells showed slightly higher (within a factor of 2-3) mutant frequencies in response to BPDE-I compared to AT3-2 at these two loci. However, at the aprt locus the repair-deficient cells were much more highly mutable (9-15-fold) than the repair-proficient AT3-2 cells. Based on the measured average level of adduct formation, it is calculated that 15% of the BPDE-I: DNA adducts in the aprt gene are converted into mutations. However, the possibility exists that the aprt locus is subject to higher levels of modification by BPDE-I than is the bulk DNA, which would lead to an artifactually high apparent conversion frequency.  相似文献   
7.
Insights into the mechanisms of chemical carcinogenesis can sometimes be gained by comparing the effects of closely related chemicals which differ in carcinogenic potency. We have treated Chinese hamster ovary (CHO) cells with a non-carcinogenic metabolite of benzo[a]pyrene, 9r,10t-dihydroxy-7c,8c-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-III), and measured the formation and persistence of DNA adducts. We have correlated this binding data with cytotoxicity and mutagenicity in a DNA-repair-proficient CHO cell line (AT3-2) and in two derived lines, UVL-1 and UVL-10, which are unable to repair bulky DNA adducts. These data are compared with similar studies of the effects of the carcinogenic metabolite, 7r,8t-dihydroxy-9t,10t-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-I). Synchronous fluorescence spectroscopy was used to measure the levels of BPDE-III-DNA adducts in treated cells. Adduct levels increased linearly with dose, but the absolute binding levels were about 30-fold lower than in comparable incubations with BPDE-I. Measurements of the removal of adducts derived from these two diol epoxides indicated no significant difference in the rate of repair measured 24 h post-treatment. When cells were treated with increasing doses of BPDE-III, survival curves were obtained which exhibited a shoulder region at low doses and an exponential decrease in plating efficiency at higher doses. By comparison of the D0's, the DNA-repair-deficient cell lines were found to be 4-5-fold more sensitive to the killing effects of BPDE-III than were the repair-proficient AT3-2 cells.  相似文献   
8.
The initiation of carcinogenesis by carcinogens such as 7r,8t-dihydroxy-9,10t-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-I) is thought to involve the formation of DNA adducts. However, the diastereomeric diol epoxide, 7r,8t-dihydroxy-9,10c-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-II), also forms DNA adducts but is inactive in standard carcinogenesis models. We have measured the formation and loss of DNA adducts derived from BPDE-II in a DNA-repair-proficient line of Chinese hamster ovary (CHO) cells, AT3-2, and in two derived mutant cell lines, UVL-1 and UVL-10, which are unable to repair bulky DNA adducts. BPDE-II adducts were lost from cellular DNA in AT3-2 cells with a half-life of 13.8 h; this was about twice the rate found for BPDE-I adducts. BPDE-II adducts were also lost from DNA in UVL-1 and UVL-10 cells, but at a much slower rate. When purified DNA was modified in vitro with BPDE-II and then held at 37 degrees C, DNA adducts were removed at a rate identical to that seen in UVL-1 and UVL-10 cells, suggesting that the loss in these cells was not due to enzymatic DNA-repair processes but to chemical lability of the adducts. Mutant frequencies at the APRT and HPRT loci were measured at BPDE-II doses that resulted in greater than 20% survival, and were found to increase linearly with dose. In the DNA-repair-deficient cells, the HPRT locus was moderately hypermutable compared with AT3-2 cells (about 5-fold); the APRT locus was extremely hypermutable, giving about 25-fold higher mutant fractions in UVL-1 and UVL-10 than in AT3-2 cells at equal initial levels of binding. When we compared the mutational efficiency of BPDE-II at both loci in AT3-2 cells (the mutant frequency in mutants/10(6) survivors at a dose that resulted in one adduct per 10(6) base pairs) with our previous studies of BPDE-1, we found that BPDE-II was 4-5 times less efficient as a mutagen than BPDE-I. This difference in mutational efficiency could be explained in part by the increased rate of loss of BPDE-II adducts from the cellular DNA, part of which was due to an increased rate of enzymatic removal of these lesions compared with the removal of BPDE-I adducts.  相似文献   
9.
10.
Transfection of UV-hypersensitive, DNA repair-deficient Chinese hamster ovary (CHO) cell lines and parental, repair-proficient CHO cells with UV-irradiated pHaprt-1 or pSV2gpt plasmids resulted in different responses by recipient cell lines to UV damage in transfected DNA. Unlike results that have been reported for human cells, UV irradiation of transfecting DNA did not stimulate the genetic transformation of CHO recipient cells. In repair-deficient CHO cells, proportionally fewer transformants were produced with increasing UV damage than in repair-proficient cells in transfections with the UV-irradiated hamster adenine phosphoribosyltransferase (APRT) gene contained in plasmid pHaprt-1. However, transfection of CHO cells with UV-irradiated pSV2gpt resulted in neither decline in transformation frequencies in repair-deficient cell lines relative to repair-proficient cells nor stimulation of genetic transformation by UV damage in the plasmid. Blot hybridization analysis of DNA samples isolated from transformed cells showed no dramatic changes in copy number or arrangement of transfected plasmid DNA with increasing UV dose. We conclude that the responses of recipient cells to UV-damaged transfecting plasmids depend both on the type of recipient cell and the characteristics of the genetic sequence used for transfection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号