首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   1篇
  2021年   4篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2012年   8篇
  2011年   3篇
  2010年   6篇
  2009年   2篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   8篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1992年   2篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有88条查询结果,搜索用时 171 毫秒
1.
2.
Limited proteolysis (papain) of the cellobiohydrolase I (CBH I, 65 kDa) from Trichoderma reesei led to the seperation of two functional domains: a core protein (55 kDa) containing the active site, and a C-terminal glycopeptide (10 kDa) implicated in binding to the insoluble matrix (cellulose). The quaternary structures of the intact CBH I and its core in solution are now compared by small angle X-ray scattering (SAXS) measurements. The molecular parameters derived for the core (Rg=2.09 nm, Dmax=6.5 nm) and for the intact enzyme (Rg=4.27 nm, Dmax=18 nm) indicate very different shapes. The resulting models show a tadpole-like structure for the intact enzyme where the isotropic part coincides with the core protein and the flexible tail part should be identified with the C-terminal glycopeptide. Thus in this enzyme, functional differentiation is reflected in structural peculiarities.Abbreviations SAXS small angle X-ray scattering - SDS-PAGE SDS-polyacrylamide gel electrophoresis - IEF-PAG polyacrylamide gel isoelectric focusing; cellobiohydrolase (CBH, 1,4--glucan cellobio hydrolase (E.C.3.2.1.91)) - Dmax maximum diameter - Rg radius of gyration  相似文献   
3.
Volume regulation by flounder red blood cells in anisotonic media   总被引:4,自引:2,他引:2       下载免费PDF全文
The nucleated high K, low Na red blood cells of the winter flounder demonstrated a volume regulatory response subsequent to osmotic swelling or shrinkage. During volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation after osmotic swelling is referred to as regulatory volume decrease (RVD) and was characterized by net K and water loss. Since the electrochemical gradient for K is directed out of the cell there is no need to invoke active processes to explain RVD. When osmotically shrunken, the flounder erythrocyte demonstrated a regulatory volume increase (RVI) back toward control cell volume. The water movements characteristic of RVI were a consequence of net cellular NaCl and KCl uptake with Na accounting for 75 percent of the increase in intracellular cation content. Since the Na electrochemical gradient is directed into the cell, net Na uptake was the result of Na flux via dissipative pathways. The addition of 10(-4)M ouabain to suspensions of flounder erythrocytes was without effect upon net water movements during volume regulation. The presence of ouabain did however lead to a decreased ration of intracellular K:Na. Analysis of net Na and K fluxes in the presence and absence of ouabain led to the conclusion that Na and K fluxes via both conservative and dissipative pathways are increased in response to osmotic swelling or shrinkage. In addition, the Na and K flux rate through both pump and leak pathways decreased in a parallel fashion as cell volume was regulated. Taken as a whole, the Na and K movements through the flounder erythrocyte membrane demonstrated a functional dependence during volume regulation.  相似文献   
4.
Glucose at pathophysiological concentrations was able to accelerate copper-induced oxidation of isolated low-density lipoprotein (LDL) and whole serum. The efficiency of glucose was favored under the following circumstances: (a) when LDL oxidation was induced by low copper concentration, (b) when LDL was partly oxidized, i.e. enriched with lipid peroxides. The glucose derivative methyl- &#102 - d -glucoside was ineffective on Cu 2+ -induced LDL oxidation, pointing out the essential role of the reactivity of the aldehydic carbon for the pro-oxidative effect. When LDL oxidation was induced by a peroxyl radical generator, as a model of transition metal independent oxidation, glucose was ineffective. Glucose was found to stimulate oxidation of LDL induced by ceruloplasmin, the major copper-containing protein of human plasma. Thus, glucose accelerated oxidation of LDL induced by both free and protein bound copper. Considering the requirement for catalytically active copper and for the aldehydic carbon, the pro-oxidative effect of glucose is likely to depend on the increased availability of Cu + ; this is more efficient in decomposing lipid peroxide than Cu 2+ , accounting for acceleration of LDL oxidation. The possible biological relevance of our work is supported by the finding that glucose was able to accelerate oxidation of whole serum, which was assessed by monitoring low-level chemiluminescence associated with lipid peroxidation.  相似文献   
5.
The formation of protein inclusions is frequently associated with chronic metabolic diseases. In mice, short-term intoxication with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) leads to hepatocellular damage indicated by elevated serum liver enzyme activities, whereas only minor morphological changes are observed. Conversely, chronic administration of DDC for several weeks results in severe morphological damage, characterized by hepatocellular ballooning, disruption of the intermediate filament cytoskeleton, and formation of Mallory-Denk bodies consisting predominantly of misfolded keratins, Sqstm1/p62, and heat shock proteins. To evaluate the mechanistic underpinnings for this dichotomy we dissected the time-course of DDC intoxication for up to 10 weeks. We determined body weight change, serum liver enzyme activities, morphologic alterations, induction of antioxidant response (heme oxygenase-1, HO-1), oxidative damage and ATP content in livers as well as respiration, oxidative damage and the presence and activity of HO-1 in endoplasmic reticulum and mitochondria (mtHO-1). Elevated serum liver enzyme activity and oxidative liver damage were already present at early intoxication stages without further subsequent increase. After 2 weeks of intoxication, mice had transiently lost 9% of their body weight, liver ATP-content was reduced to 58% of controls, succinate-driven respiration was uncoupled from ATP-production and antioxidant response was associated with the appearance of catalytically active mtHO-1. Oxidative damage was associated with both acute and chronic DDC toxicity whereas the onset of chronic intoxication was specifically associated with mitochondrial dysfunction which was maximal after 2 weeks of intoxication. At this transition stage, adaptive responses involving mtHO-1 were induced, indirectly leading to improved respiration and preventing further drop of ATP levels. Our observations clearly demonstrate principally different mechanisms for acute and chronic toxic damage.  相似文献   
6.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   
7.
8.
Abuja PM 《FEBS letters》1999,446(2-3):305-308
Uric acid and ascorbic acid are important low molecular weight antioxidants in plasma. Their interactions and combined effect on Cu(2+)-catalysed oxidation of human low density lipoprotein were studied in vitro. It was found that uric acid alone becomes strongly prooxidant whenever it is added to low density lipoprotein shortly after the start of oxidation (conditional prooxidant). Ascorbic acid, which is present in human plasma at much lower concentrations (20-60 microM) than urate (300-400 microM), is in itself not a conditional prooxidant. Moreover, ascorbate prevents prooxidant effects of urate, when added to oxidising low density lipoprotein simultaneously with urate, even at a 60-fold molar excess of urate over ascorbate. Ascorbate appears to have the same anti-prooxidant effect with other aqueous reductants, which, besides their antioxidant properties, were reported to be conditionally prooxidant. Such interactions between ascorbate and urate may be important in preventing oxidative modification of lipoproteins in the circulation and in other biological fluids.  相似文献   
9.
Abuja PM 《FEBS letters》2002,512(1-3):245-248
The content of plasma and arterial interstitial fluid in water-soluble antioxidants makes it unlikely for low-density lipoprotein (LDL) to oxidize by the oxidation mechanisms most frequently discussed. By aggregation of LDL in the presence of chondroitin-4-sulfate (C-4-S), but not with chondroitin-6-sulfate or sphingomyelinase, a complex arises which can oxidize in the presence of 20 microM ascorbate and 300 microM urate. This oxidation sensitivity even persists after the gel-filtration of an LDL/C-4-S/Cu(2+) complex, indicating entrapment of Cu(2+) within. This corresponds well to the known ability of C-4-S to bind copper ions and is a potential mechanism by which LDL oxidation in the arterial intima is facilitated after prolonged retention by the extracellular matrix.  相似文献   
10.
A method for monitoring low-density lipoprotein (LDL) oxidation by low-level chemiluminescence (LL-CL) is described in this study. The kinetic indices obtained with this procedure, in particular lag-time and K value (related to prooxidant activity of Cu2+ bound to LDL) are compared with those of the established UV-absorbing conjugated diene assay. The correlation of lag-time values obtained by LL-CL and conjugated diene assay was very high both in the case of Cu2+- and peroxyl-radical-mediated oxidation (r = 0.99). By using the transient free radical scavenging activity of butylated hydroxytoluene, a calibration of LL-CL for lipid peroxyl radical and termination rate was obtained. The spectral analysis of LL-CL from oxidizing LDL shows a maximum peak between 420 and 500 nm, corresponding to the emission of triplet carbonyl compounds. LL-CL allows continuous and direct monitoring of LDL oxidation as extraction and derivatization of lipid peroxidation products are not required. Moreover, some limitations of UV spectroscopy such as by absorbing compounds need not be considered. Therefore, the present procedure represents a simple and convenient tool for continuous monitoring of LDL oxidation which may be applied to mechanistic and clinical studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号