首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   10篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   9篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
The pursuit of more efficient carbon‐based anodes for sodium‐ion batteries (SIBs) prepared from facile and economical methods is a very important endeavor. Based on the crystallinity difference within carbon materials, herein, a low‐temperature selective burning method is developed for preparing oxygen and nitrogen codoped holey graphene aerogel as additive‐free anode for SIBs. By selective burning of a mixture of graphene and low‐crystallinity carbon at 450 °C in air, an elastic porous graphene monolith with abundant holes on graphene sheets and optimized crystallinity is obtained. These structural characteristics lead to an additive‐free electrode with fast charge (ions and electrons) transfer and more abundant Na+ storage active sites. Moreover, the heteroatom oxygen/nitrogen doping favors large interlayer distance for rapid Na+ insertion/extraction and provides more active sites for high capacitive contribution. The optimized sample exhibits superior sodium‐ion storage capability, i.e., high specific capacity (446 mAh g?1 at 0.1 A g?1), ultrahigh rate capability (189 mAh g?1 at 10 A g?1), and long cycle life (81.0% capacity retention after 2000 cycles at 5 A g?1). This facile and economic strategy might be extended to fabricating other superior carbon‐based energy storage materials.  相似文献   
2.
Biomechanics and Modeling in Mechanobiology - Computational models of the brain have become the gold standard in biomechanics to understand, predict, and mitigate traumatic brain injuries. Many...  相似文献   
3.
4.
MXene, a new class of 2D materials, has gained significant attention owing to its attractive electrical conductivity, tunable work function, and metallic nature for wide range of applications. Herein, delaminated few layered Ti3C2Tx MXene contacted Si solar cells with a maximum power conversion efficiency (PCE) of ≈11.5% under AM1.5G illumination are demonstrated. The formation of an Ohmic junction of the metallic MXene to n+‐Si surface efficiently extracts the photogenerated electrons from n+np+‐Si, decreases the contact resistance, and suppresses the charge carrier recombination, giving rise to excellent open‐circuit voltage and short‐circuit current density. The rapid thermal annealing process further improves the electrical contact between Ti3C2Tx MXene and n+‐Si surface by reducing sheet resistance, increasing electrical conductivity, and decreasing cell series resistance, thus leading to a remarkable improvement in fill factor and overall PCE. The work demonstrated here can be extended to other MXene compositions as potential electrodes for developing highly performing solar cells.  相似文献   
5.
6.
2D transition metal carbides and nitrides, known as MXenes, are an emerging class of 2D materials with a wide spectrum of potential applications, in particular in electrochemical energy storage. The hydrophilicity of MXenes combined with their metallic conductivity and surface redox reactions is the key for high‐rate pseudocapacitive energy storage in MXene electrodes. However, symmetric MXene supercapacitors have a limited voltage window of around 0.6 V due to possible oxidation at high anodic potentials. In this study, the fact that titanium carbide MXene (Ti3C2Tx) can operate at negative potentials in acidic electrolyte is exploited, to design an all‐pseudocapacitive asymmetric device by combining it with a ruthenium oxide (RuO2) positive electrode. This asymmetric device operates at a voltage window of 1.5 V, which is about two times wider than the operating voltage window of symmetric MXene supercapacitors, and is the widest voltage window reported to date for MXene‐based supercapacitors. The complementary working potential windows of MXene and RuO2, along with proton‐induced pseudocapacitance, significantly enhance the device performance. As a result, the asymmetric devices can deliver an energy density of 37 µW h cm?2 at a power density of 40 mW cm?2, with 86% capacitance retention after 20 000 charge–discharge cycles. These results show that pseudocapacitive negative MXene electrodes can potentially replace carbon‐based materials in asymmetric electrochemical capacitors, leading to an increased energy density.  相似文献   
7.
Prokaryotic toxin–antitoxin (TA) systems are linked to many roles in cell physiology, such as plasmid maintenance, stress response, persistence and protection from phage infection, and the activities of toxins are tightly regulated. Here, we describe a novel regulatory mechanism for a toxin of Escherichia coli TA systems. The MazF toxin of MazE‐MazF, which is one of the best characterized type II TA systems, was modified immediately after infection with bacteriophage T4. Mass spectrometry demonstrated that the molecular weight of this modification was 542 Da, corresponding to a mono‐ADP‐ribosylation. This modification disappeared in cells infected with T4 phage lacking Alt, which is one of three ADP‐ribosyltransferases encoded by T4 phage and is injected together with phage DNA upon infection. In vivo and in vitro analyses confirmed that T4 Alt ADP‐ribosylated MazF at an arginine residue at position 4. Finally, the ADP‐ribosylation of MazF by Alt resulted in the reduction of MazF RNA cleavage activity in vitro, suggesting that it may function to inactivate MazF during T4 infection. This is the first example of the chemical modification of an E. coli toxin in TA systems to regulate activity.  相似文献   
8.
Spinal cord injury (SCI) can induce prolonged spinal cord compression that may result in a reduction of local tissue perfusion, progressive ischemia, and potentially irreversible tissue necrosis. Due to the combination of risk factors and the varied presentation of symptoms, the appropriate method and time course for clinical intervention following SCI are not always evident. In this study, a three-dimensional finite element fluid-structure interaction model of the cervical spinal cord was developed to examine how traditionally sub-clinical compressive mechanical loads impact spinal arterial blood flow. The spinal cord and surrounding dura mater were modeled as linear elastic, isotropic, and incompressible solids, while blood was modeled as a single-phased, incompressible Newtonian fluid. Simulation results indicate that anterior, posterior, and anteroposterior compressions of the cervical spinal cord have significantly different ischemic potentials, with prediction that the posterior component of loading elevates patient risk due to the concomitant reduction of blood flow in the arterial branches. Conversely, anterior loading compromises flow through the anterior spinal artery but minimally impacts branch flow rates. The findings of this study provide novel insight into how sub-clinical spinal cord compression could give rise to certain disease states, and suggest a need to monitor spinal artery perfusion following even mild compressive loading.  相似文献   
9.
In this work, a simple lignin‐based laser lithography technique is developed and used to fabricate on‐chip microsupercapacitors (MSCs) using 3D graphene electrodes. Specifically, lignin films are transformed directly into 3D laser‐scribed graphene (LSG) electrodes by a simple one‐step CO2 laser irradiation. This step is followed by a water lift‐off process to remove unexposed lignin, resulting in 3D graphene with the designed electrode patterns. The resulting LSG electrodes are hierarchically porous, electrically conductive (conductivity is up to 66.2 S cm?1), and have a high specific surface area (338.3 m2 g?1). These characteristics mean that such electrodes can be used directly as MSC electrodes without the need for binders and current collectors. The MSCs fabricated using lignin laser lithography exhibit good electrochemical performances, namely, high areal capacitance (25.1 mF cm?2), high volumetric energy density (≈1 mWh cm?3), and high volumetric power density (≈2 W cm?3). The versatility of lignin laser lithography opens up the opportunity in applications such as on‐chip microsupercapacitors, sensors, and flexible electronics at large‐scale production.  相似文献   
10.
Conducting polymers such as polyaniline (PAni) show a great potential as pseudocapacitor materials for electrochemical energy storage applications. Yet, the cycling instability of PAni resulting from structural alteration is a major hurdle to its commercial application. Here, the development of nanostructured PAni–RuO2 core–shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO2 grown by atomic layer deposition (ALD) on PAni nanofibers plays a crucial role in stabilizing the PAni pseudocapacitors and improving their energy density. The pseudocapacitors, which are based on optimized PAni–RuO2 core–shell nanostructured electrodes, exhibit very high specific capacitance (710 F g?1 at 5 mV s?1) and power density (42.2 kW kg?1) at an energy density of 10 Wh kg?1. Furthermore, they exhibit remarkable capacitance retention of ≈88% after 10 000 cycles at very high current density of 20 A g?1, superior to that of pristine PAni‐based pseudocapacitors. This prominently enhanced electrochemical stability successfully demonstrates the buffering effect of ALD coating on PAni, which provides a new approach for the preparation of metal‐oxide/conducting polymer hybrid electrodes with excellent electrochemical performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号