首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   8篇
  2021年   1篇
  2019年   1篇
  2016年   2篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1976年   3篇
  1973年   1篇
排序方式: 共有29条查询结果,搜索用时 281 毫秒
1.
In this study, we examined the mechanism of translation of the human immunodeficiency virus type 1 tat mRNA in eucaryotic cells. This mRNA contains the tat open reading frame (ORF), followed by rev and nef ORFs, but only the first ORF, encoding tat, is efficiently translated. Introduction of premature stop codons in the tat ORF resulted in efficient translation of the downstream rev ORF. We show that the degree of inhibition of translation of rev is proportional to the length of the upstream tat ORF. An upstream ORF spanning 84 nucleotides was predicted to inhibit 50% of the ribosomes from initiating translation at downstream AUGs. Interestingly, the distance between the upstream ORF and the start codon of the second ORF also played a role in efficiency of downstream translation initiation. It remains to be investigated if these conclusions relate to translation of mRNAs other than human immunodeficiency virus type 1 mRNAs. The strong inhibition of rev translation exerted by the presence of the tat ORF may reflect the different roles of Tat and Rev in the viral life cycle. Tat acts early to induce high production of all viral mRNAs. Rev induces a switch from the early to the late phase of the viral life cycle, resulting in production of viral structural proteins and virions. Premature Rev production may result in entrance into the late phase in the presence of suboptimal levels of viral mRNAs coding for structural proteins, resulting in inefficient virus production.  相似文献   
2.
Semliki Forest virus was grown in BHK cells and labeled in vivo with radioactive monosaccharides. Pronase digests of the virus chromatographed on Bio-Gel P6 revealed glycopeptides of A-type and B-type. (For the nomenclature see Johnson, J. and Clamp, J.R. (1971) Biochem. J. 123, 739-745.) The former was labeled with [3H]fucose, [3H]galactose, [3H]mannose and [14C]glucosamine, the latter only with [3H]mannose and [14C]glucosamine. The three envelope glycoproteins E1, E2 and E3 were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subjected to pronase digestion. The glycoproteins E1 and E3 revealed glycopeptides of A-type. E2 revealed glycopeptides of B-type. E2 yielded additionally a glycopeptide (Mr3100) which was heavily labeled from [3H]galactose, but only marginally from [14C]glucosamine, [3H]fucose and [3H]mannose. Whether this glycopeptide belongs to the A-type or not remains uncertain. The apparent molecular weights of the A-type units measured by gel filtration were 3400 in E1 and 4000 in E3; the B-type unit of E2 had an apparent molecular weight of 2000. Combined with the findings of our earlier chemical analysis these data suggest that E1 and E3 contain on the average one A-type unit; E2 probably contains one 3100 dalton unit plus one or two B-type units.  相似文献   
3.
Kaposi's sarcoma (KS), the most frequent malignancy afflicting AIDS patients, is characterized by spindle cell formation and vascularization. Infection with KS-associated herpesvirus (KSHV) is consistently observed in all forms of KS. Spindle cell formation can be replicated in vitro by infection of dermal microvascular endothelial cells (DMVEC) with KSHV. To study the molecular mechanism of this transformation, we compared RNA expression profiles of KSHV-infected and mock-infected DMVEC. Induction of several proto-oncogenes was observed, particularly the receptor tyrosine kinase c-kit. Consistent with increased c-Kit expression, KHSV-infected DMVEC displayed enhanced proliferation in response to the c-Kit ligand, stem cell factor (SCF). Inhibition of c-Kit activity with either a pharmacological inhibitor of c-Kit (STI 571) or a dominant-negative c-Kit protein reversed SCF-dependent proliferation. Importantly, inhibition of c-Kit signal transduction reversed the KSHV-induced morphological transformation of DMVEC. Furthermore, overexpression studies showed that c-Kit was sufficient to induce spindle cell formation. Together, these data demonstrate an essential role for c-Kit in KS tumorigenesis and reveal a target for pharmacological intervention.  相似文献   
4.
5.
Livestock grazing is an important management tool of agri-environment schemes initiated within the European Union to maintain and restore biodiversity of grassland birds. However, grazing can affect bird populations negatively by depressing reproduction through nest trampling and increasing nest predation. These effects are, however, considered low when using recommended stocking rates. By simulating wader nests, we experimentally quantify and examine the causes of variation in trampling rates on managed Baltic coastal meadows. Secondly, we examine whether livestock presence increases nest predation of one management target, the critically endangered southern dunlin (Calidris alpina schinzii). Trampling rates of experimental nests were high. Only 21% of nests would have survived a three week incubating period early in the grazing season. Trampling rates were most severe at the onset of grazing and decreased with time. Thus, timing of grazing plays a crucial role in determining breeding success on managed meadows. Predation rates of dunlin nests were moderate and did not depend on livestock presence suggesting that incubating dunlin are not disturbed by cattle. While grazing is vital in habitat restoration and in conserving grassland biodiversity, our results suggest that grazing may also threaten the viability of populations if negative effects are underestimated. Therefore, management plans, especially for endangered species, should not only rely on general recommendations on stocking rates but instead planners need to evaluate the significance of negative effects in terms of local conditions (timing of breeding and grazing, space use of cattle and birds, measured trampling rates) and adjust grazing practises accordingly.  相似文献   
6.
Preterm birth is the major cause of neonatal death and serious morbidity. Most preterm births are due to spontaneous onset of labor without a known cause or effective prevention. Both maternal and fetal genomes influence the predisposition to spontaneous preterm birth (SPTB), but the susceptibility loci remain to be defined. We utilized a combination of unique population structures, family-based linkage analysis, and subsequent case-control association to identify a susceptibility haplotype for SPTB. Clinically well-characterized SPTB families from northern Finland, a subisolate founded by a relatively small founder population that has subsequently experienced a number of bottlenecks, were selected for the initial discovery sample. Genome-wide linkage analysis using a high-density single-nucleotide polymorphism (SNP) array in seven large northern Finnish non-consanginous families identified a locus on 15q26.3 (HLOD 4.68). This region contains the IGF1R gene, which encodes the type 1 insulin-like growth factor receptor IGF-1R. Haplotype segregation analysis revealed that a 55 kb 12-SNP core segment within the IGF1R gene was shared identical-by-state (IBS) in five families. A follow-up case-control study in an independent sample representing the more general Finnish population showed an association of a 6-SNP IGF1R haplotype with SPTB in the fetuses, providing further evidence for IGF1R as a SPTB predisposition gene (frequency in cases versus controls 0.11 versus 0.05, P = 0.001, odds ratio 2.3). This study demonstrates the identification of a predisposing, low-frequency haplotype in a multifactorial trait using a well-characterized population and a combination of family and case-control designs. Our findings support the identification of the novel susceptibility gene IGF1R for predisposition by the fetal genome to being born preterm.  相似文献   
7.
Preterm birth is the major cause of neonatal mortality and morbidity. In many cases, it has severe life-long consequences for the health and neurological development of the newborn child. More than 50% of all preterm births are spontaneous, and currently there is no effective prevention. Several studies suggest that genetic factors play a role in spontaneous preterm birth (SPTB). However, its genetic background is insufficiently characterized. The aim of the present study was to perform a linkage analysis of X chromosomal markers in SPTB in large northern Finnish families with recurrent SPTBs. We found a significant linkage signal (HLOD  = 3.72) on chromosome locus Xq13.1 when the studied phenotype was being born preterm. There were no significant linkage signals when the studied phenotype was giving preterm deliveries. Two functional candidate genes, those encoding the androgen receptor (AR) and the interleukin-2 receptor gamma subunit (IL2RG), located near this locus were analyzed as candidates for SPTB in subsequent case-control association analyses. Nine single-nucleotide polymorphisms (SNPs) within these genes and an AR exon-1 CAG repeat, which was previously demonstrated to be functionally significant, were analyzed in mothers with preterm delivery (n = 272) and their offspring (n = 269), and in mothers with exclusively term deliveries (n = 201) and their offspring (n = 199), all originating from northern Finland. A replication study population consisting of individuals born preterm (n = 111) and term (n = 197) from southern Finland was also analyzed. Long AR CAG repeats (≥26) were overrepresented and short repeats (≤19) underrepresented in individuals born preterm compared to those born at term. Thus, our linkage and association results emphasize the role of the fetal genome in genetic predisposition to SPTB and implicate AR as a potential novel fetal susceptibility gene for SPTB.  相似文献   
8.
Hyaluronan enters keratinocytes by a novel endocytic route for catabolism.   总被引:5,自引:0,他引:5  
Hyaluronan synthesized in the epidermis has an exceptionally short half-life, indicative of its catabolism by epidermal keratinocytes. An intracellular pool of endogenously synthesized hyaluronan, from 1 to 20 fg/cell, inversely related to cell density, was observed in cultured rat epidermal keratinocytes. More than 80% of the intracellular hyaluronan was small (<90 kDa). Approximately 25% of newly synthesized hyaluronan was endocytosed by the keratinocytes and had a half-life of 2-3 h. A biotinylated aggrecan G(1) domain/link protein probe demonstrated hyaluronan in small vesicles of approximately 100 nm diameter close to the plasma membrane, and in large vesicles and multivesicular bodies up to 1300 nm diameter around the nucleus. Hyaluronan did not co-localize with markers of lysosomes. However, inhibition of lysosomal acidification with NH(4)Cl or chloroquine, or treating the cells with the hyaluronidase inhibitor apigenin increased intracellular hyaluronan staining, suggesting that it resided in prelysosomal endosomes. Competitive displacement of hyaluronan from surface receptors using hyaluronan decasaccharides, resulted in a rapid disappearance of this endosomal hyaluronan (t(12) approximately 5 min), indicating its transitory nature. The ultrastructure of the hyaluronan-containing vesicles, co-localization with marker proteins for different vesicle types, and application of specific uptake inhibitors demonstrated that the formation of hyaluronan-containing vesicles did not involve clathrin-coated pits or caveolae. Treatment of rat epidermal keratinocytes with the OX50 monoclonal antibody against the hyaluronan receptor CD44 increased endosomal hyaluronan. However, no CD44-hyaluronan co-localization was observed intracellularly unless endosomal trafficking was retarded by monensin, or cultivation at 20 degrees C, suggesting CD44 recycling. Rat epidermal keratinocytes thus internalize a large proportion of their newly synthesized hyaluronan into non-clathrin-coated endosomes in a receptor mediated way, and rapidly transport it to slower degradation in the endosomal/lysosomal system.  相似文献   
9.
Human SH-SY5Y neuroblastoma and mouse L929 fibroblast cells were exposed to 872 MHz radiofrequency (RF) radiation using continuous waves (CW) or a modulated signal similar to that emitted by GSM mobile phones at a specific absorption rate (SAR) of 5 W/kg in isothermal conditions. To investigate possible combined effects with other agents, menadione was used to induce reactive oxygen species, and tert-butylhydroperoxide (t-BOOH) was used to induce lipid peroxidation. After 1 or 24 h of exposure, reduced cellular glutathione levels, lipid peroxidation, proliferation, caspase 3 activity, DNA fragmentation and viability were measured. Two statistically significant differences related to RF radiation were observed: Lipid peroxidation induced by t-BOOH was increased in SH-SY5Y (but not in L929) cells, and menadione-induced caspase 3 activity was increased in L929 (but not in SH-SY5Y) cells. Both differences were statistically significant only for the GSM-modulated signal. The other end points were not significantly affected in any of the experimental conditions, and no effects were observed from exposure to RF radiation alone. The positive findings may be due to chance, but they may also reflect effects that occur only in cells sensitized by chemical stress. Further studies are required to investigate the reproducibility and dose response of the possible effects.  相似文献   
10.
A combination of point mutations disrupting both stem 1 and stem 2 of U5 snRNA (U5AI) was found to confer a thermosensitive phenotype in vivo. In a strain expressing U5AI, pre-mRNA splicing was blocked before the first step through an inability of the mutant U5 snRNA to efficiently associate with the U4/U6 di-snRNP. Formation of early splicing complexes was not affected in extracts prepared from U5 snRNA mutant cells, while the capacity of these extracts to splice a pre-mRNA in vitro was greatly diminished. In addition, significant levels of a translation product derived from intron containing pre-mRNAs could be detected in vivo. The SSD1/SRK1 gene was identified as a multi-copy suppressor of the U5AI snRNA mutant. Single copy expression of SSD1/SRK1 was sufficient to suppress the thermosensitive phenotype, and high copy expression partially suppressed the splicing and U4/U6.U5 tri-snRNP assembly pheno-types. SSD1/SRK1 also suppressed thermosensitive mutations in the Prp18p and U1-70K proteins, while inhibiting growth of the cold sensitive U1-4U snRNA mutant at 30 degrees C. Thus we have identified SSD1/SRK1 as a general suppressor of splicing mutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号