首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2009年   1篇
  2007年   1篇
  1997年   1篇
  1995年   2篇
  1991年   1篇
排序方式: 共有6条查询结果,搜索用时 187 毫秒
1
1.
We used a nonintrusive field experiment carried out at six sites – Wales (UK), Denmark (DK), the Netherlands (NL), Hungary (HU), Sardinia (Italy – IT), and Catalonia (Spain – SP) – along a climatic and latitudinal gradient to examine the response of plant species richness and primary productivity to warming and drought in shrubland ecosystems. The warming treatment raised the plot daily temperature by ca. 1 °C, while the drought treatment led to a reduction in soil moisture at the peak of the growing season that ranged from 26% at the SP site to 82% in the NL site. During the 7 years the experiment lasted (1999–2005), we used the pin‐point method to measure the species composition of plant communities and plant biomass, litterfall, and shoot growth of the dominant plant species at each site. A significantly lower increase in the number of species pin‐pointed per transect was found in the drought plots at the SP site, where the plant community was still in a process of recovering from a forest fire in 1994. No changes in species richness were found at the other sites, which were at a more mature and stable state of succession and, thus less liable to recruitment of new species. The relationship between annual biomass accumulation and temperature of the growing season was positive at the coldest site and negative at the warmest site. The warming treatment tended to increase the aboveground net primary productivity (ANPP) at the northern sites. The relationship between annual biomass accumulation and soil moisture during the growing season was not significant at the wettest sites, but was positive at the driest sites. The drought treatment tended to reduce the ANPP in the NL, HU, IT, and SP sites. The responses to warming were very strongly related to the Gaussen aridity index (stronger responses the lower the aridity), whereas the responses to drought were not. Changes in the annual aboveground biomass accumulation, litterfall, and, thus, the ANPP, mirrored the interannual variation in climate conditions: the most outstanding change was a decrease in biomass accumulation and an increase in litterfall at most sites during the abnormally hot year of 2003. Species richness also tended to decrease in 2003 at all sites except the cold and wet UK site. Species‐specific responses to warming were found in shoot growth: at the SP site, Globularia alypum was not affected, while the other dominant species, Erica multiflora, grew 30% more; at the UK site, Calluna vulgaris tended to grow more in the warming plots, while Empetrum nigrum tended to grow less. Drought treatment decreased plant growth in several studied species, although there were some species such as Pinus halepensis at the SP site or C. vulgaris at the UK site that were not affected. The magnitude of responses to warming and drought thus depended greatly on the differences between sites, years, and species and these multiple plant responses may be expected to have consequences at ecosystem and community level. Decreases in biodiversity and the increase in E. multiflora growth at the SP site as a response to warming challenge the assumption that sensitivity to warming may be less well developed at more southerly latitudes; likewise, the fact that one of the studied shrublands presented negative ANPP as a response to the 2003 heat wave also challenges the hypothesis that future climate warming will lead to an enhancement of plant growth and carbon sequestration in temperate ecosystems. Extreme events may thus change the general trend of increased productivity in response to warming in the colder sites.  相似文献   
2.
1. In order to test the effect of Ochromonas sp. , a mixotrophic chrysophyte, on cyanobacteria, grazing experiments were performed under controlled conditions. We studied grazing on three Microcystis aeruginosa strains, varying in toxicity and morphology, as well as on one filamentous cyanobacterium, Pseudanabaena sp. Furthermore, we analysed the co-occurrence of Ochromonas and Microcystis in natural systems in relation to various environmental parameters (TP, TN, DOC, temperature, pH), using data from 460 Norwegian lakes.
2.  Ochromonas was able to feed on all four cyanobacterial strains tested, and grew quickly on all of them. The chrysophyte caused net growth reductions in all three Microcystis strains (the very toxic single-celled strain PCC 7806; the less toxic colony-forming Bear AC and the less toxic single-celled Spring CJ). The effect of Ochromonas was strongest on the Spring CJ strain. Although the effect of Ochromonas grazing on the growth of Pseudanabaena was relatively smaller, it also reduced the net growth of this cyanobacterium significantly.
3. After 4 days of incubation with Ochromonas the total amount of cyanotoxins in the three Microcystis strains was reduced by 91.1–98.7% compared with the controls.
4.  Ochromonas occurred in similar densities across all 460 Norwegian lakes. Microcystis occurred only at higher TN, TP, temperature and pH values, although its density was often several orders of magnitude higher than that of Ochromonas . Ochromonas co-occurred in 94% of the samples in which Microcystis was present.
5. From our study it is not clear whether Ochromonas could control Microcystis blooms in natural lakes. However, our study does demonstrate that Ochromonas usually occurs in lakes with Microcystis , and our small scale experiments show that Ochromonas can strongly reduce the biomass of Microcystis and its toxin content.  相似文献   
3.
4.
5.
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号