首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2019年   2篇
  2018年   3篇
排序方式: 共有5条查询结果,搜索用时 140 毫秒
1
1.
脱嘌呤/脱嘧啶核酸内切酶1(Apurinic/apyrimidinic endonuclease 1,APE1)是一种广泛存在于生物体内、在碱基切除修复(Base excision repair,BER)过程中能够在碱基缺失位点(AP site)处识别并切割DNA的蛋白酶,其作用效率高且特异性强。同时,APE1在一些癌症细胞中的活性较正常细胞明显偏高,因此其自身也是一种癌症生物标志物。目前,通过在DNA上人工设计AP位点,利用APE1的切割能力生成理想的功能核酸链,并结合不同的信号输出及放大方式,研究者已经建立了一些APE1介导的电化学、荧光功能核酸生物传感技术,实现了对DNA糖基化酶等的酶活性的检测。另外,也有一些针对APE1自身活性的功能核酸生物传感技术被建立起来。综述了近年来APE1介导的功能核酸生物传感技术以及以APE1为靶物质的功能核酸和免疫生物传感技术的研究状况,讨论了与APE1相关的生物传感技术的意义及存在的问题,并对未来利用APE1实现更多靶物质的检测的发展趋势进行了展望,以期促进APE1成为一种功能核酸生物传感技术中常用的酶工具。  相似文献   
2.
介孔二氧化硅纳米粒子(Mesoporous silica nanoparticles,MSNs)是一种表面多孔的无机纳米粒子,具有粒子和孔的大小可调节,大的表面积和孔体积,可进行表面修饰以及良好的生物相容性等特点被广泛应用于医疗领域作为抗癌药物的递送载体。目前,将MSNs与功能核酸(Functional nucleic acids,FNA)进行良好结合并制备生物传感器应用于检测技术领域的研究主要偏向于把FNA固定在MSNs表面,通过FNA结构的改变实现介孔中客体分子的可控释放,进一步转换为荧光信号、电信号等进行检测。综述了MSNs的基本属性、制备及其应用,重点介绍了几类基于MSNs的功能核酸生物传感器,讨论了介孔二氧化硅介导的功能核酸检测技术在应用研究中的实际意义及其存在的问题,最后展望了该项技术的发展前景,可能面临的机遇及挑战,以期能够进一步促进介孔二氧化硅介导的功能核酸检测技术在实际中的应用。  相似文献   
3.
金属-有机骨架(Metal-Organic Frameworks,MOFs)也称为配位聚合物(Coordination polymers,CPs),是由金属离子或金属簇与有机连接配体在相对温和的条件下自组装形成的一种晶体分子功能材料。其具有超高的孔隙率,优异的结构可调性,巨大的内部表面积,结构多样性,高的化学稳定性和强大的热稳定性等特点;已被应用于化工、医药等各个领域。目前,将MOFs与功能核酸(Functional nucleic acids,FNA)结合制备生物传感器应用于检测技术领域的相关研究主要集中在荧光生物传感器和电化学生物传感器这两大类,其他类型生物传感器鲜有报道。另外MOFs的制备也逐渐趋于小型化以提高它的相关性能。综述了近年来MOFs介导的功能核酸生物传感器研究情况,讨论了MOFs介导的功能核酸检测技术在应用研究中的实际意义及其存在的问题。对该项技术的发展前景,可能面临的机遇及挑战进行了展望,期望能促进MOFs介导的功能核酸检测技术在实际应用中的发展。  相似文献   
4.
脱嘌呤/脱嘧啶核酸内切酶1(Apurinic/apyrimidinic endonuclease 1,APE1)是一种广泛存在于生物体内、在碱基切除修复(Base excision repair,BER)过程中能够在碱基缺失位点(AP site)处识别并切割DNA的蛋白酶,其作用效率高且特异性强。同时,APE1在一些癌症细胞中的活性较正常细胞明显偏高,因此其自身也是一种癌症生物标志物。目前,通过在DNA上人工设计AP位点,利用APE1的切割能力生成理想的功能核酸链,并结合不同的信号输出及放大方式,研究者已经建立了一些APE1介导的电化学、荧光功能核酸生物传感技术,实现了对DNA糖基化酶等的酶活性的检测。另外,也有一些针对APE1自身活性的功能核酸生物传感技术被建立起来。综述了近年来APE1介导的功能核酸生物传感技术以及以APE1为靶物质的功能核酸和免疫生物传感技术的研究状况,讨论了与APE1相关的生物传感技术的意义及存在的问题,并对未来利用APE1实现更多靶物质的检测的发展趋势进行了展望,以期促进APE1成为一种功能核酸生物传感技术中常用的酶工具。  相似文献   
5.
趋磁细菌(Magnetotactic bacteria,MTB)是一种可在外磁场作用下沿磁场线定向运动的革兰氏阴性菌,其体内的磁小体(Bacterial magnetosomes,BMs)是由MTB经过生物矿化合成的。BMs在MTB体内成链状排列,由外层膜和内部磁铁矿晶体构成。BMs具有大小均一,单磁畴,大的比表面积,良好的生物相容性,超顺磁性等特点被广泛应用于医疗领域。目前,基于MTB的改造方法相对较少且主要偏向于通过改变BMs的形态、组成等进一步达到改造MTB的目的。BMs的功能化策略相对较多,主要分为化学修饰和生物修饰两种。综述了MTB和BMs的基本特性及筛选技术,并着重介绍了MTB的改造方法和BMs的功能化策略,最后讨论了MTB改造和BMs功能化在实际应用中的意义以及存在的问题。展望了MTB改造和BMs功能化的发展前景,可能面临的机遇及挑战,以期能够进一步促进MTB和BMs在实际中的应用。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号