首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   3篇
  2022年   1篇
  2018年   2篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 203 毫秒
1
1.
典型养殖湖泊大通湖软体动物的时空分布格局   总被引:2,自引:0,他引:2  
研究于 2008 年 12 月至 2009 年 10 月按季度对大通湖水质及软体动物资源监测, 并通过纵向比较, 探讨了集约化养殖对大通湖水域环境及软体动物群落的影响, 以期为其渔业可持续发展提供理论依据。结果显示, 大通湖水质全年呈碱性 (8.62 0.07), 具有较高的还原性 (-88.40 9.10) mv, 属富营养水体。软体动物共计 5 科 15 种, 梨形环棱螺(Bellamya purificata)、河蚬(Corbicula fluminea)和圆顶珠蚌(Unio doug lasiae)是主要优势种。软体动物平均密度和生物量具有明显的时空差异, 时间上呈现由春夏季到秋冬季逐渐升高的趋势, 空间上整体呈现由东北向西南逐渐递减的趋势。典范对应分析表明氧化还原电位、pH、溶氧、水深、电导率和水温与大通湖软体动物时空变化的关系最显著。与 1960 年相比, 大通湖水体碱性显著增强 (7.0-7.5 vs 8.4-8.8), 电导率增加了 9 倍 (0.25-0.27 vs 2.17-2.56 mS/cm), 环境类型由氧化型转变为还原型。湖区喜好水草 (白旋螺、光亮隔扁螺、萝卜螺) 与流水生境 (德氏狭口螺、湖沼股蛤、橄榄蛏蚌) 的物种消失, 软体动物优势种群呈现由双壳类向腹足类演替的特征。生境破坏和过度捕捞是大通湖软体动物资源面临的最大威胁, 也是湖区渔业可持续发展所面临的核心问题。    相似文献   
2.
为探究黄芪多糖免疫草鱼母本所产子代早期发育阶段体液免疫因子IgM、C3和LSZ的表达特性及代间传递效率。采用ELISA、RT-qPCR等方法分析了饲喂黄芪多糖草鱼母本血液及其子代早期发育阶段3种免疫因子的蛋白质活性及mRNA水平。结果显示,黄芪多糖免疫草鱼母本血液中IgM、C3和LSZ蛋白活性均显著高于对照组。在子代早期阶段中,3种免疫因子蛋白活性呈先下降后上升趋势,实验组IgM蛋白活性在各阶段均显著高于对照组,在卵子、5d和28d仔鱼中分别提高了2.2倍、1.7倍和1.8倍。实验组C3活性在卵子、24h胚胎分别提高了1.9倍和1.6倍。实验组LSZ活性在卵子、5d和28d仔鱼中分别提高了2.4倍、2.0倍和1.9倍;在卵子和受精卵时期3种免疫因子mRNA水平显著高于对照组。在24h胚胎至5d仔鱼没有检测到IgM和LSZ mRNA,而在14d后3种免疫因子的mRNA均呈上调表达,但Ig M和C3 mRNA水平与对照组无显著差异。GCRV攻毒后,实验组2月龄草鱼脾脏和头肾中IgM mRNA水平显著高于对照组。结果表明,黄芪多糖能够提高草鱼母本免疫能力并向子代垂直传递,在应对GCRV感染时发挥一定免疫保护作用。  相似文献   
3.
白细胞介素2(interleukin-2,IL-2)是免疫系统的关键调控因子,其在免疫刺激和免疫抑制过程中均发挥重要作用。作为第一个上市的肿瘤免疫疗法药物,IL-2因疗效不足及严重不良反应导致其临床应用受到很大限制。通过对IL-2进行修饰,可延长药物半衰期,提高细胞特异性,使之更加特异地作用于效应T细胞或调节性T细胞,用于肿瘤或自身免疫病的治疗,是目前免疫治疗领域的研发热点之一。其中聚乙二醇(polyethylene glycol,PEG)修饰IL-2分子与PD-1单抗联用,在黑色素瘤治疗上显现出很好的潜力;同时,还有更多用于肿瘤和自身免疫病治疗的IL-2修饰分子也已进入临床研究阶段。相信将有IL-2修饰分子获得监管部门批准,成为人类对抗免疫相关疾病的有力武器。  相似文献   
4.
大通湖浮游植物群落结构及其与环境因子关系   总被引:4,自引:0,他引:4  
2008年12月至2009年10月按季度对养殖湖泊大通湖浮游植物群落结构及与环境因子关系进行了初步研究,并通过与1960年数据的纵向比较,探讨了集约化养殖对大通湖水域环境的影响,为其渔业可持续发展提供理论依据.调查期间,共发现浮游植物98种,隶属于7门54属.优势种类包括二角多甲藻、尖尾蓝隐藻、小球藻、卵形隐藻、梅尼小环藻、啮蚀隐藻、卷曲鱼腥藻、铜绿微囊藻和固氮鱼腥藻,优势种的季节更替明显.浮游植物细胞密度的年平均值为1.84×106 cells·L-1,其中夏季最高,为16.4×106 cells·L-1,其他3个季度在1.71×106 ~ 1.98×106 cells·L-1.浮游植物丰富度指数(D)全年在2.01 ~4.55,Shannon多样性指数(H)在1.26 ~2.69,均匀度指数(J)在0.69~1.27.典范对应分析表明,水深、水温、透明度、总磷、氧化还原电位、电导率是影响大通湖浮游植物群落结构的主要因子.  相似文献   
5.
试验旨在研究饲粮添加α-酮戊二酸(α-ketoglutarate, α-KG)对氨氮胁迫下草鱼(Ctenopharyngodon idellus)鳃Na+/K+-ATP酶活性及血液生化指标的影响。选取初始体重为(24.79±0.11) g的健康草鱼, 随机分为3个处理组(对照组, 养于曝气后氨氮浓度为1.51 mg/L的自来水中并饲喂基础饲粮; 氨氮组, 养于氨氮浓度为18.37 mg/L的水中并饲喂基础饲粮; α-KG组, 养于氨氮浓度为18.37 mg/L的水中并饲喂添加0.75% α-KG的饲粮)。每处理组设3个重复, 每个重复30尾鱼, 养殖试验为期42d, 分别于第1、第14、第28和第42天采样。结果表明:在饲料中添加α-KG能够有效缓解氨氮胁迫导致的草鱼血浆氨含量(1d)、谷草转氨酶(Aspartate transaminase, AST)活性(14d)、碱性磷酸酶(Alkaline phosphatase, ALP)活性(28d)的显著升高和鳃Na+/K+-ATP酶活性(28d)、血浆谷丙转氨酶(Alanine aminotransaminase, ALT)(28d和42d)活性、血浆尿素(UREA)含量(28d)的显著降低, 显著增加氨氮胁迫下草鱼血浆球蛋白(Globulin, GLB)含量(28d)。即饲粮α-KG的适量添加能够有效缓解草鱼氨氮胁迫所致的血氨含量升高, 维持氨氮胁迫下草鱼鳃Na+/K+-ATP酶、血浆谷丙转氨酶、谷草转氨酶、碱性磷酸酶的活性和血浆球蛋白、尿素含量的稳定, 从而有利于草鱼缓解氨氮胁迫。  相似文献   
6.
牛膝多糖对草鱼免疫和抗氧化功能的影响   总被引:2,自引:0,他引:2  
为探讨在饲料中添加牛膝多糖(ABP)对草鱼免疫和抗氧化功能的影响, 选取平均体重(88.130.76) g的健康草鱼375尾, 随机分成5个处理, 即基础饲料组、0.05 %、0.10 %、0.20 %、0.40 % ABP添加组, 每个处理3个重复, 每个重复25尾鱼, 饲养65 d。结果表明, 在饲料中添加ABP对草鱼头肾体指数影响不显著(P0.05), 对脾体指数影响显著(P0.05), 与对照组相比, 0.05 %、0.10 %、0.20 %和0.40%添加组脾体指数分别增加6.29% (P0.05)、28.00% (P0.05)、9.14%(P0.05)和13.14% (P0.05); 血液中NBT阳性细胞数随着ABP添加量的增加呈增加的趋势, 但各组间差异不显著(P0.05); 在饲料中添加ABP对草鱼血清白蛋白、白介素-1(IL-1)、白介素-6(IL-6)含量和过氧化氢酶活影响不显著(P0.05), 显著影响草鱼血清总蛋白(TP)、碱性磷酸酶(AKP)、酸性磷酸酶(ACP)、溶菌酶(LZM)、-肿瘤坏死因子(TNF-)、超氧化物歧化酶(SOD)及丙二醛(MDA)含量(P0.05)。与对照组相比, 0.40%添加组的TP和AKP分别增加24.64% (P0.05)和33.56% (P0.05); 0.20 %、0.40 %添加组的LZM活力分别增加34.97% (P0.05)和31.21% (P0.05), SOD活力分别增加27.28% (P0.05)和22.41% (P0.05); 饲料中随着ABP添加剂量的增加, 各组血清ACP活性先增加后缓慢下降, MDA含量先下降后上升。与对照组相比, 0.20%、0.40 %添加组ACP活性分别增加15.33% (P0.05)和11.10% (P0.05), 0.05%、0.10 %、0.20 %及0.40%添加组MDA含量分别下降11.97% (P0.05)、21.33% (P0.05)、32.37% (P0.05)和2.53% (P0.05)。饲料中随着ABP添加量的增加, 各组草鱼血清TNF-含量变化规律不明显, 但与对照组相比, 0.20%添加组TNF-含量显著增加(P0.05)。综上所述, 在草鱼基础日粮中添加适量牛膝多糖可以提高草鱼的免疫和抗氧化能力, 建议添加量为0.20%。    相似文献   
7.
微RNA(microRNAs,miRNAs)是在基因编码中起负性调控作用的内源性短链非编码RNA(non-coding RNAs,ncRNAs),是生理和病理过程中基因表达必不可少的转录后调控物。miRNAs占人类基因组的1%~2%,通过与各自的mRNA结合并抑制其翻译,调节大于50%的人类基因及60%的哺乳动物蛋白质编码基因。系统性硬化症(systemic sclerosis,SSc)的发病机制由复杂的miRNAs网络调控。这些miRNAs位于与SSc纤维化相关的基因组区域,通过参与调节重要的细胞信号通路,如TGF-β、Wnt/β-catenin、TLR-4、IL和PDGF-β等,在SSc纤维化过程中发挥作用。同时,还与细胞信号转导、基质修复与重塑、成纤维细胞凋亡、胶原蛋白质合成和细胞外基质(extracellular matrix,ECM)沉积等相关。充分了解miRNAs在SSc纤维化中的重要性,有助于为SSc的诊断提供新的生物标记,为治疗提供新策略。本文综述了miRNAs在SSc纤维化过程中参与调节的这些复杂细胞信号通路的作用及机制,以期为SSc诊断、严重程度判断、预后评估,以及寻求潜在治疗靶点提供新思路。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号