首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
排序方式: 共有2条查询结果,搜索用时 78 毫秒
1
1.
Objective: 1,4-Benzodioxane is an important chiral intermediate for antihypertensive (Proroxan and Doxazosin), antidepressant (MCK-242) and other drugs, and it displays a broad spectrum of applications in the pharmaceutical field. Currently, in spite of high-yield advantage of chemical synthesis, there are some problems of environmental pollution and low production safety. Using lipase to catalyze synthesis of 1,4-benzodioxane provides a new pathway of green synthesis of 1,4-benzodioxane. However, natural enzymes face the dilemma of poor enantioselectivity. Therefore, molecular evolution was performed on Candida antarctica lipase B, and a technical route for the catalytic synthesis of 1,4-benzodioxane was established. Methods: Firstly, the key amino acid residues involved in substrate binding and conversion in the active center of Candida antarctica lipase B were analyzed, and saturation mutagenesis libraries on the interaction sites were constructed. Improved mutants with high efficiency and high enantioselectivity were then obtained using HPLC detection. Furthermore, catalytic synthesis conditions of mutant D223N/A225K were systematically optimized. Results: The results indicated that the mutants mainly derived from the pairwise site D223/A225 (such as D223N/A225K and D223G/A225W) were biased towards the synthesis of (S)-isoforms, while most of the mutants derived from the pairwise site E188/I189 (such as E188D/I189M) showed a bias for the synthesis of (R)-isoforms. Compared with WT, the ees value of the best mutant D223N/A225K to synthesize (S)-1,4-benzodioxane was increased from 11.9% to 29.3%. After systematic optimization of the reaction conditions, an ees value of (93.9±0.16)% and a conversion rate of (47.5±2.33)% were achieved using mutant D223N/A225K to catalyze kinetic resolution of methyl (R,S)-2,3-dihydro-1,4-benzodioxin-2-carboxylate in n-butanol/phosphate buffered saline (20∶80, V/V) biphasic solvent at 37℃ for 50 min. Conclusion: An efficient kinetic resolution of methyl (R,S)-2,3-dihydro-1,4-benzodioxin-2-carboxylate was successfully achieved by molecular evolution and optimization of conditions, which provides a new example for the creation of new enzymes by protein engineering technology, and also provides a theoretical and technical foundation for the efficient synthesis of (S)-1,4-benzodioxane molecules by enzymatic methods.  相似文献   
2.
β-羟基-α-氨基酸(β-hydroxy-α-amnio acids,HAAs)是一类广泛应用于制药工业的重要手性中间体。由于其含有双手性中心(Cα和Cβ),探索其严格立体选择性的生物合成方法备受关注。苏氨酸醛缩酶(threonine aldolase,TA)可在温和条件下催化不同类型的醛与氨基酸缩合构筑丰富的HAAs产物库,显示了工业应用潜力。由于目前表征的TA普遍存在对Cβ立体选择性不严格、活性较低以及催化机制不清晰等问题,为其在HAAs合成中的应用带来了挑战。本文综述了TA在新酶挖掘、结构与催化机理解析、蛋白质工程以及合成应用等方面的研究进展,为推动酶催化绿色、高效合成手性药物提供参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号