首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   978篇
  国内免费   24篇
  完全免费   90篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   7篇
  2012年   14篇
  2011年   14篇
  2010年   13篇
  2009年   62篇
  2008年   48篇
  2007年   66篇
  2006年   77篇
  2005年   66篇
  2004年   38篇
  2003年   54篇
  2002年   46篇
  2001年   54篇
  2000年   34篇
  1999年   21篇
  1998年   26篇
  1997年   31篇
  1996年   27篇
  1995年   20篇
  1994年   36篇
  1993年   14篇
  1992年   26篇
  1991年   20篇
  1990年   53篇
  1989年   25篇
  1988年   21篇
  1987年   14篇
  1986年   16篇
  1985年   23篇
  1984年   37篇
  1983年   5篇
  1982年   19篇
  1981年   11篇
  1980年   20篇
  1979年   2篇
  1978年   8篇
  1977年   5篇
  1976年   7篇
  1973年   1篇
排序方式: 共有1092条查询结果,搜索用时 31 毫秒
1.
东黄海秋季浮游动物优势种聚集强度与鲐鲹渔场的关系   总被引:68,自引:5,他引:63  
一、前言日本鲐鱼(Pneumatophorus japonicus)和蓝圆鲹(Decaterus maruadsi)是东黄海主要中上层鱼类资源。秋季鲐鲹鱼在黄海南部和东海北部(北纬32°00′—33°30′,东经124°00′—128°30′)以及东海中南部(北纬26°30′—29°00′,东经123°00′—126°00′)形成两个索饵渔场,前者简称为北部渔场,后者简称为南部渔场。为了开发和利用东黄海鲐鲹鱼索饵渔场资源,需要对两渔场鲐鲹鱼资源分布的特点进行研究。根据以往国内外的一些报道,鲐鲹鱼是一类以浮游动物为主食的鱼类,其分布特点往往同浮游动物的分布有密切关系。因此,本  相似文献
2.
长江河口浮游动物的种类组成、群落结构及多样性   总被引:66,自引:10,他引:56       下载免费PDF全文
于1999年枯水期(2—3月份)、丰水期(8月份)、2000年枯水期(2—3月份)对长江河口浮游动物采样调查,研究了长江河口浮游动物的种类组成、群落结构及多样性并初步探讨了三峡工程对长江河口浮游动物的影响及长江河口水环境的生物监测。调查共发现浮游动物87种,甲壳动物占绝对优势,共59种。在所有浮游动物中挠足类31种。其次为水母类,有9种,此外,枝角类、毛颚类各8种。3次采样浮游动物的优势种主要有河口半咸水种和近岸低盐种类如华哲水蚤(Sinocalanus sinensis)、火腿许水蚤(Schmackeria poplesia)、虫肢歪水蚤(Tortanus vermiculus),真刺唇角水蚤(Labidocera euchaeta)等,还有长江径流带到河口的淡水种如近领剑水蚤(Cyclops vicinus vicinus)、英勇剑水蚤(Cyclops strenuus)、透明溞(Daphnia hyalina)等。一些浮游动物可作为水系指示种,其分布、数量反映了不同水系分布变化,长江河口浮游动物有;类水系指示种。通过对长江河口浮游动物群落聚类分析发现。1999、2000年枯水期浮游动物群落结构相似。可分为河口类群、近岸类群和近外海类群。1999年丰水期只形成近岸和近外海类群。浮游动物种类数由口门内向口门外方向有逐渐增加的趋势。浮游动物种类数由北向南变化趋势一致。大潮与小潮、涨憩与落强等潮汐作用对浮游动物影响往往因采样时间与区域等的不同而不同。对长江河口3次采样的物种多样性指数和均匀度指数进行了计算,结果表明:浮游动物多样性指数1999年枯水期最低,1999年丰水期最高。  相似文献
3.
The effects of planktivorous and benthivorous fish on benthic fauna, zooplankton, phytoplankton and water chemistry were studied experimentally in two eutrophic Swedish lakes using cylindrical enclosures. In enclosures in both lakes, dense fish populations resulted in low numbers of benthic fauna and planktonic cladocerans, high concentration of chlorophyll, blooms of blue-green, algae, high pH and low transparency. In the soft-water Lake Trummen, total phosporus increased in the enclosure with fish, but in the hard-water Lake Bysjön total phosphorus decreased simultaneously with precipitation of calcium carbonate. Enclosures without fish had a higher abundance of benthic fauna and large planktonic cladocerans, lower phytoplankton biomass, lower pH and higher transparency.The changes in enclosures with fish can be described as eutrophication, and those in enclosures without fish as oligotrophication. The possibility of regulation of fish populations as a lake restoration method is discussed.This paper was presented at the XXth SIL Congress in Copenhagen in 1977.  相似文献
4.
5.
本文报道了1993年5月、7月和10月在府河-白洋淀六个采样站浮游动物生态学特征及其与水质相互关系的调查研究结果。利用浮游动物群落结构的综合指标(种类组成差异,种类数目变化,个体数量变动,生物量分布,多样性指数d值的增减)和功能参数(PFU原生动物的群集速度)评价了府河-白洋淀水体的污染程度和自净效能。按照Margalef多样性指数d值的变化范围,把府河-白洋淀六个采样站的水质划分成不同的次序和等级。文中就如何控制污染,提高府河的自净效果,改善白洋淀的水质提出了具体措施和建议.  相似文献
6.
东海赤潮高发区春季浮游动物生态特征的研究   总被引:28,自引:5,他引:23       下载免费PDF全文
根据2002年4~5月东海122°~123°30′E、29°~32°N水域海洋综合调查资料,对东海赤潮高发区浮游动物的数量分布、群落特征、种类组成及优势种等进行了分析.结果表明,在调查区共鉴定出饵料浮游动物128种[不含16种浮游幼虫(体)和仔鱼],分5门12大类,以桡足类占优势(40种,31.25%).浮游动物群落以广温广盐生态类群为主.中华哲水蚤(Calanus sinicus)为最主要优势种(142.10ind·m-3,68.09%).总生物量均值为243.80mg-m3(55.53~773.92mg·m-3),最高密集区(>500mg·m-3)位于长江口30°45′~31°15′N、122°45′~123°15′E水域.饵料生物量均值为195.96mg·m13(55.53~496.09mg·m。),呈长江口(30°30′N以北)水域高于舟山岛东南水域、长江口外海(122°45′E以东)高于近海水域的分布趋势.多样性指数(H′)均值为2.12(1.09~3.73).长江口水域多样度、均匀度和丰富度低,优势度大,反映出浮游动物群落结构不够稳定.采用逐步回归分析得知,影响本区春季浮游动物生态特征值分布的主要因子是水温、硅藻和甲藻.  相似文献
7.
Why do cladocerans fail to control algal blooms?   总被引:26,自引:19,他引:7  
Field studies show that even at high nutrient loads phytoplankton may be kept at low levels by filter-feeding zooplankton for a period of weeks (spring clear water phase in lakes) or months (low-stocked fish-ponds). In the absence of planktivorous fish, large-bodied cladocerans effectively control the abundance of algae of a broad size spectrum. Laboratory experiments show that, although difficult to handle and of poor nutritional value, filamentous algae can also be utilized by large-bodiedDaphnia and prevented from population increase, exactly as the principles of the biomanipulation approach would predict. This is not always the case, however. Even when released from predation, large cladocerans often cannot grow and reproduce fast enough to prevent bloom formation. Sometimes, they disappear when the bloom becomes dense, and the biomanipulation approach is not applicable any more. Recent experimental data on four differently-sizedDaphnia species are used in an attempt to (1) explain why cladocerans fail to control filamentous cyanobacteria when filament density is high, and (2) determine the critical filament density at whichDaphnia becomes ineffective. At this critical concentration,Daphnia growth and reproduction is halted, and no positive numerical response to growing phytoplankton standing crop should be expected fromDaphnia population. Bloom formation thus becomes irreversible. The question of what can be done to overcome this bottleneck of the biomanipulation approach may become one of the most challenging questions in plankton ecology in the nearest future.  相似文献
8.
The structure, feeding and metabolism of the filterfeeders community of Lake Vechten (The Netherlands) were investigated for seven years in relation to the functioning of the lake's ecosystem. The 14C-technique used in the grazing and assimilation study is discussed in detail with a critical analysis of the methodological errors.The three major species which contributed to the annual density, biomass and grazing maxima in spring are: Bosmina longirostris, Daphnia spp. and Eudiaptomus gracilis. The rise in grazing pressure in recent years, particularly in May, was accompanied by a corresponding decrease in the seston (<33 µm) biomass, and in increase of inedible algae, especially Ceratium hirudinella, in late summer. The means of daily grazing ranged from 3% in March to 34% in June. The mean annual ratio ingestion: phytoplankton production varied from 70 to 230%. The specific filtering rate, SFR (ml · day–1 · mg–1 · zoop · C), was related directly to water temperature but inversely to the food concentrations.The main errors in the ingestion and assimilation rates were related to the leaching of the isotope from the animals in the preservation fluid. The loss of tracer was 42 and 26%, respectively, for the two rates.In spring, the food removed by the grazers per day was equivalent to 125–400% of the daily primary production. This caused a sharp decrease in the seston concentrations and a recurring clear water phase because of a sharp increase in the Secchi depth. The zooplankton assimilatory removal of carbon and the sedimentation loss rates to the hypolimnion exceeded the primary production rates. The inconsistencies in the carbon budget are possibly due to our lack of knowledge of the horizontal transport of material from the littoral, bacteria as an alternative food source for zooplankton, and the DOC dynamics.The grazers' activity as SFR in deep, stratifying lakes like Vechten is 3 to 4 times that in the shallow, mixed and more eutrophic Dutch lakes. In the former category of lakes the crustacean herbivores serve as an important link in the food chain in the limnetic region.  相似文献
9.
Interactions of pelagic cnidarians and ctenophores with fish: a review   总被引:25,自引:7,他引:18  
Medusae, siphonophores and ctenophores (here grouped as `pelagic coelenterates') interact with fish in several ways. Some interactions are detrimental to fish populations, such as predation by gelatinous species on pelagic eggs and larvae of fish, the potential competition for prey among pelagic coelenterates and fish larvae and zooplanktivorous fish species, and pelagic coelenterates serving as intermediate hosts for fish parasites. Other interactions are positive for fish, such as predation by fish on gelatinous species and commensal associations among fish and pelagic coelenterates. The interactions range from beneficial for the gelatinous species (food, parasite removal), to negative (predation on them). We review existing information and present new data on these topics. Although such interactions have been documented frequently, the significance to either fish or pelagic coelenterate populations is poorly understood. The effects of pelagic coelenterates on fish populations are of particular interest because of the great importance of fisheries to the global economy. As fishing pressures mount, it becomes increasingly important to understand how they may influence the balance between pelagic coelenterates and fish.  相似文献
10.
The hypertrophic Lake Zwemlust, a small water body used as a swimming pool, was characterized by algal blooms in summer, reducing the Secchi disk transparency to less than 0.3 m. Since in The Netherlands a Secchi disk transparency of 1 m is obligatory for swimming waters, corrective measures were called for to improve the light climate of the lake. In March, 1987, as an experiment, the lake was drained by pumping out the water to facilitate fish elimination. Planktivorous and benthivorous fish species, which were predominant, were removed by seine- and electro-fishing. After the lake had refilled by seepage it was restocked by a new simple fish community comprising pike (Esox lucius) and rudd (Scardinius erythrophthalmus) only. Stacks of willow twigs (Salix) and macrophytes (roots ofNuphar lutea and seedlings ofChara globularis) were introduced into the lake as spawning grounds and refuges for the pike against cannibalism and as shelter for the zooplankton. The effects of this food web manipulation on the light climate, phytoplankton, zooplankton, fish, macrophytes, macrofauna and on the nutrient concentrations were monitored during 1987 and 1988. In summer 1987, despite of high nutrient concentrations, the phytoplankton density was low, due to control by zooplankton, causing a Secchi disk transparency of 2.5 m, the maximum depth. Chlorophyll-a concentrations were low (<5 g Chl.l–1), blooms of cyanobacteria did not occur and a shift from rotifers to cladocerans took place. In 1988, however, also some negative effects were noticed. Macrophytes and filamentous green algae reached a much higher biomass (50–60% cover of the lake bottom) than in 1987; some species, growing through the entire water column, interfered with the lake's recreational use. Associated with the macro-vegetation and possibly with the absence of larger cyprinids, the diet of which also comprises snails, a large scale development of the snail population, among themLymnaea peregra var.ovata took place. This species is known to act as an intermediate host of the bird-parasitizing trematodeTrichobilharzia ocellata, the cercariae of which cause an itching sensation at the spot of penetration of the human skin, accompanied by rash (schistosome dermatitis or swimmers' itch); in July, 1988, about 40% of the bathers complained about this itching. A positive effect of the macrophytes and filamentous green algae was the high uptake of nitrogen, resulting in a low nitrogen concentration in the lake and growth limitation of the phytoplankton population by nitrogen in the summer of 1988. In 1988 the cladocerans were abundant in April only; and unlike in 1987, in the summer of 1988 there was a shift from cladocerans to rotifers. Therefore, only in early spring (April) zooplankton grazing controlled phytoplankton growth and in summer nitrogen limitation was the major controlling factor, keeping chlorophyll-a concentrations low.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号