首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   95篇
  国内免费   26篇
  2024年   1篇
  2023年   16篇
  2022年   15篇
  2021年   25篇
  2020年   30篇
  2019年   22篇
  2018年   36篇
  2017年   20篇
  2016年   30篇
  2015年   27篇
  2014年   25篇
  2013年   48篇
  2012年   22篇
  2011年   31篇
  2010年   15篇
  2009年   49篇
  2008年   41篇
  2007年   48篇
  2006年   49篇
  2005年   36篇
  2004年   25篇
  2003年   50篇
  2002年   32篇
  2001年   21篇
  2000年   40篇
  1999年   36篇
  1998年   29篇
  1997年   27篇
  1996年   31篇
  1995年   30篇
  1994年   30篇
  1993年   25篇
  1992年   17篇
  1991年   18篇
  1990年   16篇
  1989年   11篇
  1988年   16篇
  1987年   7篇
  1986年   8篇
  1985年   11篇
  1984年   9篇
  1983年   5篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1978年   1篇
排序方式: 共有1095条查询结果,搜索用时 15 毫秒
1.
Whole-plant ABA flux and the regulation of water loss in Cedrella odorata   总被引:2,自引:0,他引:2  
Three-month-old Cedrella odorata seedlings were exposed to a soil-drying treatment. During this period, xylem sap was periodically collected from the plant by applying pneumatic pressure to the roots. This also allowed whole-plant water status to be measured by recording the balancing pressure applied. The concentration of ABA in xylem sap (C) was related to the whole-plant transpiration rate (V) which was measured with a sap flow gauge. The analysis of these paired measurements centred on how the reciprocal of C (R) varied with respect to V. This revealed that (1) the observed increases in C could not be explained by the reductions in V alone, (2) initially, decreases in V were associated with proportional increases in the whole-plant ABA flux (M), and (3) this relationship broke down at low values of V since zero flow was associated with a finite value for C estimated to be 41 pmol ABA mmol?1 H2O. A simple static model is developed from the observations that is able to explain the data well, and the results are discussed in terms of the effects of ABA on stomatal conductance (gsw).  相似文献   
2.
The three-dimensional pattern of phloem and xylem in 10-d-to two-month-old tumors induced by Agrobacterium tumefaciens (C58) and in adjacent Ricinus communis L. stem tissues was studied in thick sections by clearing with lactic acid and by staining with lacmoid. The crown galls contained two types of vascular strands: treelike branched bundles, which developed towards the tumor surface in fast-growing regions, and globular bundles in the slowly developing parts. Both types of vascular bundles contained xylem and phloem and were continuous with the vascular system of the host plant. The tumor bundles were interconnected by a dense net of phloem anastomoses, consisting of sieve tubes but no vessels. These vascular patterns reflect the apparent synthesis sites, concentration gradients and flow pathways of the plant hormones additionally produced in the tumors upon expression of the T-DNA-encoded genes. The A. tumefaciens-induced crown gall affected vascular differentiation in the host stem. In the basipetal direction, the tumor induced more xylem differentiation directly below it, where the crown-gall bundles joined the vascular system of the host. In the centripetal direction, the crown gall caused the development of pathologic xylem characterized by narrow vessels, giant rays and absence of fibers. On the other hand, most probably as a consequence of its gibberellic acid content, the host plant stimulated a local differentiation of regenerative phloem and xylem fibers with unique ramifications, only at the base of the tumor. However, fibers were absent from the main body of the crown gall. The study shows that A. tumefaciens-induced crown galls are characterized by a sophisticated network of vascular tissues in the tumor and are accompanied by a perturbated vessel system in the host. The hormonal mechanisms controlling vascular differentiation in the tumor and neighboring host tissues are discussed. In addition, the gall constriction hypothesis is proposed for explaining the mechanism which gives priority in water supply to the growing gall over the host shoot.We thank Dr. Zs. Koncz (Max-Planck-Institut für Züchtungsforschung, Köln, Germany) for Agrobacterium strains and the Deutsche Forschungsgemeinschaft (SFB 199) for financial support to C.I.U.  相似文献   
3.
Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na+) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na+ concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na+ transporter TaHKT1;5-D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na+ from the root xylem leading to a high shoot Na+ concentration. The identification of the tissue-tolerant Mocho de Espiga Branca will accelerate the development of more elite salt-tolerant bread wheat cultivars.  相似文献   
4.
MethodsCO2 efflux measurements were conducted during freezing experiments for saplings of three Scots pine (Pinus sylvestris) and three Norway spruce (Picea abies) trees under laboratory conditions, and the magnitudes of the freezing-related bursts of CO2 released from the stems were analysed using a previously published mechanistic model of CO2 production, storage, diffusion and efflux from a tree stem. The freezing-related bursts of CO2 released from a mature Scots pine tree growing in field conditions were also measured and analysed.ConclusionsAll gases dissolved in the xylem sap are not trapped within the ice in the stem during freezing, as has previously been assumed, thus adding a new dimension to the understanding of winter embolism formation. The conduit water volume not only determines the volume of bubbles formed during freezing, but also the efficiency of gas efflux out of the conduit during the freezing process.  相似文献   
5.
Effects of drought on nutrient and ABA transport in Ricinus communis   总被引:1,自引:1,他引:0  
We studied the effects of variations of water flux through the plant, of diurnal variation of water flux, and of variation of vapour pressure deficit at the leaf on compensation pressure in the Passioura-type pressure chamber, the composition of the xylem sap and leaf conductance in Ricinus communis. The diurnal pattern of compensation pressure showed stress relaxation during the night hours, while stress increased during the day, when water limitation increased. Thus compensation pressure was a good measure of the momentary water status of the root throughout the day and during drought. The bulk soil water content at which predawn compensation pressure and abscisic acid concentration in the xylem sap increased and leaf conductance decreased, was high when the water usage of the plant was high. For all xylem sap constituents analysed, variations in concentrations during the day were larger than changes in mean concentrations with drought. Mean concentrations of phosphate and the pH of the xylem sap declined with drought, while nitrate concentration remained constant. When the measurement leaf was exposed to a different VPD from the rest of the plant, leaf conductance declined by 400mmol m?2 s?1 when compensation pressure increased by 1 MPa in all treatments. The compensation pressure needed to keep the shoot turgid, leaf conductance and the abscisic acid concentration in the xylem were linearly related. This was also the case when the highly dynamic development of stress was taken into account.  相似文献   
6.
7.
Transport of zinc and manganese to developing wheat grains   总被引:11,自引:0,他引:11  
An understanding of the transport pathway used by Zn and Mn to enter developing grains may allow measures to increase the Zn and Mn content of wheat grain grown on Zn/Mn deficient soils. For this reason, transport of Zn and Mn into developing grains of wheat ( Triticum aestivum L. cv. Aroona) was investigated. Detached ears (18–22 days post-anthesis) were cultured for 48 h in a solution containing 185 kBq of 65Zn and 185 kBq of 54Mn. Transport of 65Zn to the grain was unaffected by removal of glumes but was slightly reduced after the lemma was removed. Heat girdling the peduncle slightly reduced the amount of 65Zn transported to the grain, whilst heat girdling the rachilla reduced transport of 65Zn to the grain to a greater degree, suggesting phloem transport to the rachilla. The transport inhibitor CCCP (carbonyl cyanide m -chlorophenyl hydrazone) blocked 65Zn transport to grain but not to lemma and glumes. Removing glumes and lemma and heat girdling the peduncle did not affect transport of 54Mn, but transport was slightly affected by heat girdling the rachilla, indicating xylem transport. CCCP blocked transport of 54Mn into the grain but not to lemma and glumes. It was concluded that xylem-to-phloem transfer of Zn occurs in the rachis and to a lesser extent in peduncle and lemma. The results suggest that the lemma may be an important site for phloem loading when the concentration of Zn within the xylem is high. The data also suggest that Mn was predominantly translocated to the spikelets in the xylem, but that transport to the grain was dependent upon membrane transport before entering the grain. Phloem loading of Mn into the grain vascular system may have occurred at the site of xylem discontinuity in the floral axis.  相似文献   
8.

Background and Aims

Silicon (Si) has been shown to ameliorate the negative influence of cadmium (Cd) on plant growth and development. However, the mechanism of this phenomenon is not fully understood. Here we describe the effect of Si on growth, and uptake and subcellular distribution of Cd in maize plants in relation to the development of root tissues.

Methods

Young maize plants (Zea mays) were cultivated for 10 d hydroponically with 5 or 50 µm Cd and/or 5 mm Si. Growth parameters and the concentrations of Cd and Si were determined in root and shoot by atomic absorption spectrometry or inductively coupled plasma mass spectroscopy. The development of apoplasmic barriers (Casparian bands and suberin lamellae) and vascular tissues in roots were analysed, and the influence of Si on apoplasmic and symplasmic distribution of 109Cd applied at 34 nm was investigated between root and shoot.

Key Results

Si stimulated the growth of young maize plants exposed to Cd and influenced the development of Casparian bands and suberin lamellae as well as vascular tissues in root. Si did not affect the distribution of apoplasmic and symplasmic Cd in maize roots, but considerably decreased symplasmic and increased apoplasmic concentration of Cd in maize shoots.

Conclusions

Differences in Cd uptake of roots and shoots are probably related to the development of apoplasmic barriers and maturation of vascular tissues in roots. Alleviation of Cd toxicity by Si might be attributed to enhanced binding of Cd to the apoplasmic fraction in maize shoots.  相似文献   
9.
Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.  相似文献   
10.
We examined changes in branch hydraulic, leaf structure and gas exchange properties in coast redwood ( Sequoia sempervirens ) and giant sequoia ( Sequoiadendron giganteum ) trees of different sizes. Leaf-specific hydraulic conductivity ( k L) increased with height in S. sempervirens but not in S. giganteum , while xylem cavitation resistance increased with height in both species. Despite hydraulic adjustments, leaf mass per unit area (LMA) and leaf carbon isotope ratios ( δ 13C) increased, and maximum mass-based stomatal conductance ( g mass) and photosynthesis ( A mass) decreased with height in both species. As a result, both A mass and g mass were negatively correlated with branch hydraulic properties in S. sempervirens and uncorrelated in S. giganteum . In addition, A mass and g mass were negatively correlated with LMA in both species, which we attributed to the effects of decreasing leaf internal CO2 conductance ( g i). Species-level differences in wood density, LMA and area-based gas exchange capacity constrained other structural and physiological properties, with S. sempervirens exhibiting increased branch water transport efficiency and S. giganteum exhibiting increased leaf-level water-use efficiency with increasing height. Our results reveal different adaptive strategies for the two redwoods that help them compensate for constraints associated with growing taller, and reflect contrasting environmental conditions each species faces in its native habitat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号