首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26268篇
  免费   2208篇
  国内免费   1876篇
  2024年   45篇
  2023年   512篇
  2022年   516篇
  2021年   888篇
  2020年   970篇
  2019年   1344篇
  2018年   1065篇
  2017年   701篇
  2016年   801篇
  2015年   896篇
  2014年   1547篇
  2013年   1846篇
  2012年   1146篇
  2011年   1496篇
  2010年   1213篇
  2009年   1473篇
  2008年   1452篇
  2007年   1479篇
  2006年   1273篇
  2005年   1196篇
  2004年   977篇
  2003年   935篇
  2002年   853篇
  2001年   555篇
  2000年   513篇
  1999年   460篇
  1998年   436篇
  1997年   354篇
  1996年   330篇
  1995年   327篇
  1994年   275篇
  1993年   256篇
  1992年   239篇
  1991年   177篇
  1990年   176篇
  1989年   135篇
  1988年   133篇
  1987年   115篇
  1986年   95篇
  1985年   137篇
  1984年   187篇
  1983年   142篇
  1982年   112篇
  1981年   110篇
  1980年   114篇
  1979年   91篇
  1978年   55篇
  1977年   48篇
  1976年   48篇
  1974年   37篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
Abstract. Plant functional types are a necessary device for reducing the complex and often uncharted characteristics of species diversity in function and structure when attempting to project the nature and function of species assemblages into future environments. A workshop was held to review the current methods commonly used for defining plant functional types, either globally or for particular biomes, and to compare them with the field experiences of specialists for specific biomes of the world. The methods fall into either an objective and inductive approach or a subjective and deductive approach. When the different methods were tested, it was generally found that the classification for one site or environment was not wholly applicable to a different site or environment. However, the degree of change which is necessary for adjustment between environments may not prove to be a major limitation in the use of functional types.  相似文献   
3.
Mutual information and entropy transfer analysis employed on two inactive states of human beta-2 adrenergic receptor (β2-AR) unraveled distinct communication pathways. Previously, a so-called “highly” inactive state of the receptor was observed during 1.5 microsecond long molecular dynamics simulation where the largest intracellular loop (ICL3) was swiftly packed onto the G-protein binding cavity, becoming entirely inaccessible. Mutual information quantifying the degree of correspondence between backbone-Cα fluctuations was mostly shared between intra- and extra-cellular loop regions in the original inactive state, but shifted to entirely different regions in this latest inactive state. Interestingly, the largest amount of mutual information was always shared among the mobile regions. Irrespective of the conformational state, polar residues always contributed more to mutual information than hydrophobic residues, and also the number of polar-polar residue pairs shared the highest degree of mutual information compared to those incorporating hydrophobic residues. Entropy transfer, quantifying the correspondence between backbone-Cα fluctuations at different timesteps, revealed a distinctive pathway directed from the extracellular site toward intracellular portions in this recently exposed inactive state for which the direction of information flow was the reverse of that observed in the original inactive state where the mobile ICL3 and its intracellular surroundings drove the future fluctuations of extracellular regions.  相似文献   
4.
Effective chemotherapy for solid cancers is challenging due to a limitation in permeation that prevents anticancer drugs from reaching the center of the tumor, therefore unable to limit cancer cell growth. To circumvent this issue, we planned to apply the drugs directly at the center by first collapsing the outer structure. For this, we focused on cell–cell communication (CCC) between N-glycans and proteins at the tumor cell surface. Mature N-glycans establish CCC; however, CCC is hindered when numerous immature N-glycans are present at the cell surface. Inhibition of Golgi mannosidases (GMs) results in the transport of immature N-glycans to the cell surface. This can be employed to disrupt CCC. Here, we describe the molecular design and synthesis of an improved GM inhibitor with a non-sugar mimic scaffold that was screened from a compound library. The synthesized compounds were tested for enzyme inhibition ability and inhibition of spheroid formation using cell-based methods. Most of the compounds designed and synthesized exhibited GM inhibition at the cellular level. Of those, AR524 had higher inhibitory activity than a known GM inhibitor, kifunensine. Moreover, AR524 inhibited spheroid formation of human malignant cells at low concentration (10 µM), based on the disruption of CCC by GM inhibition.  相似文献   
5.
6.
Based on their developmental patterns, the bony tentorium (BT) and bony falx (BF) of mammals can be classified into two types, the carnivoran type and the dolphin type. The former develops as part of the skull bones during the fetal period and is already completed at birth, while the latter is gradually formed by ossification in the tentorium cerebelli (TC) and falx cerebri (FC) during the course of aging. The BT of spider monkeys is assigned to the dolphin type.  相似文献   
7.
8.
9.
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N–15N dipole–dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD–CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD–CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD–CTD dimerization interfaces are less significant.  相似文献   
10.
Mutations in the CSF3 granulocyte colony-stimulating factor receptor CSF3R have recently been found in a large percentage of patients with chronic neutrophilic leukemia and, more rarely, in other types of leukemia. These CSF3R mutations fall into two distinct categories: membrane-proximal mutations and truncation mutations. Although both classes of mutation have exhibited the capacity for cellular transformation, several aspects of this transformation, including the kinetics, the requirement for ligand, and the dysregulation of downstream signaling pathways, have all been shown to be discrepant between the mutation types, suggesting distinct mechanisms of activation. CSF3R truncation mutations induce overexpression and ligand hypersensitivity of the receptor, likely because of the removal of motifs necessary for endocytosis and degradation. In contrast, little is known about the mechanism of activation of membrane-proximal mutations, which are much more commonly observed in chronic neutrophilic leukemia. In contrast with CSF3R truncation mutations, membrane-proximal mutations do not exhibit overexpression and are capable of signaling in the absence of ligand. We show that the Thr-615 and Thr-618 sites of membrane-proximal mutations are part of an O-linked glycosylation cluster. Mutation at these sites prevents O-glycosylation of CSF3R and increases receptor dimerization. This increased dimerization explains the ligand-independent activation of CSF3R membrane-proximal mutations. Cytokine receptor activation through loss of O-glycosylation represents a novel avenue of aberrant signaling. Finally, the combination of the CSF3R membrane proximal and truncation mutations, as has been reported in some patients, leads to enhanced cellular transformation when compared with either mutation alone, underscoring their distinct mechanisms of action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号