首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   48篇
  国内免费   24篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   6篇
  2020年   14篇
  2019年   16篇
  2018年   16篇
  2017年   5篇
  2016年   11篇
  2015年   11篇
  2014年   28篇
  2013年   35篇
  2012年   20篇
  2011年   27篇
  2010年   24篇
  2009年   32篇
  2008年   26篇
  2007年   23篇
  2006年   25篇
  2005年   26篇
  2004年   23篇
  2003年   17篇
  2002年   11篇
  2001年   10篇
  2000年   6篇
  1999年   11篇
  1998年   13篇
  1997年   7篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   8篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
排序方式: 共有490条查询结果,搜索用时 109 毫秒
1.
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.  相似文献   
2.
When life first evolved on Earth, there was little oxygen in the atmosphere. Evolution of antioxidant defences must have been closely associated with the evolution of photosynthesis and of O2-dependent electron transport mechanisms. Studies with mice lacking antioxidant defences confirm the important roles of MnSOD and transferrin in maintaining health, but show that glutathione peroxidase (GPX) and CuZnSOD are not essential for everyday life (at least in mice). Superoxide can be cytotoxic by several mechanisms: one is the formation of hydroxyl radicals. There is good evidence that OH· formation occurs in vivo. Other important antioxidants may include thioredoxin, and selenoproteins other than GPX. Nitric oxide may be an important antioxidant in the vascular system. Diet-derived antioxidants are important in maintaining human health, but recent studies employing “biomarkers” of oxidative DNA damage are questioning the “antioxidant” roles of β-carotene and ascorbate. An important area of future research will be elucidation of the reasons why levels of steady-state oxidative damage to DNA and lipids vary so much between individuals, and their predictive value for the later development of human disease.  相似文献   
3.
4.
Thioredoxin h (TRX h) functions as a reducing protein and is present in all organisms. As a new approach for inducing the endoplasmic reticulum (ER) stress, TRX h (OsTRX23) was expressed as a secretory protein using the endosperm-specific glutelin GluB-1 promoter and a signal peptide. In transgenic rice seeds, the majority of the recombinant TRX h accumulated in the ER but some was also localized to the protein body IIs (PB-IIs). The rice grain quality was dependent on the TRX h accumulation level. Increased TRX h expression resulted in aberrant phenotypes, such as chalky and shriveled features, lower seed weight and lower seed protein content. Furthermore, the accumulation of some seed storage proteins (SSPs) was significantly suppressed and the morphology of the protein bodies (PB-Is and PB-IIs) changed according to the level of TRX h. SSPs, such as 13 kDa prolamin and GluA, were specifically modified via the reducing action of TRX h. These changes led to the activation of the ER stress response, which was accompanied by the expression of several chaperone proteins. Specifically, the ER stress markers BiP4 and BiP5 were significantly up-regulated by an increase in the level of TRX h. These results suggest that changes in the conformation of certain SSPs via the action of recombinant TRX h lead to an induced ER stress response in transgenic rice seeds.  相似文献   
5.
d-Galactose is widely used as an agent to cause aging effects in experimental animals. The present study aims to investigate the effects of hydrogen sulfide (H2S) in human neuroblastoma SH-SY5Y cells exposed to d-galactose. Cells were pretreated with NaHS, an H2S donor, and then exposed to d-galactose (25–400 mM for 48 h). We found that NaHS pretreatment significantly reversed the d-galactose-induced cell death and cellular senescence. MTT assay shows that NaHS significantly increased cell viability from 62.31 ± 1.29% to 72.34 ± 0.46% compared with d-galactose (200 mM) treatment group. The underlying mechanism appeared to involve a reduction by NaHS in the formation of advanced glycation end products (AGEs), which are known to contribute to the progression of age-related diseases. In addition, NaHS decreased the elevation of reactive oxygen species from 151.17 ± 2.07% to 124.8 ± 2.89% and malondialdehyde from 1.72 ± 0.07 to 1.10 ± 0.08 (nmol/mg protein) in SH-SY5Y cells after d-galactose exposure. NaHS also stimulated activities of superoxide dismutase from 0.42 ± 0.05 to 0.73 ± 0.04 (U/mg protein) and glutathione peroxidase from 3.98 ± 0.73 to 14.73 ± 0.77 (nmol/min/mg protein) and upregulated the gene expression levels of copper transport protein ATOX1, glutathione synthetase (GSS) and thioredoxin reductase 1 (TXNRD1) while down-regulated aldehyde oxidase 1 (AOX1). In summary, our data indicate that H2S may have potentially anti-aging effects through the inhibition of AGEs formation and reduction of oxidative stress.  相似文献   
6.
7.
Selenite (SeO3 2?) assimilation into a bacterial selenoprotein depends on thioredoxin (trx) reductase in Esherichia coli, but the molecular mechanism has not been elucidated. The mineral-oil overlay method made it possible to carry out anaerobic enzyme assay, which demonstrated an initial lag-phase followed by time-dependent steady NADPH consumption with a positive cooperativity toward selenite and trx. SDS-PAGE/autoradiography using 75Se-labeled selenite as substrate revealed the formation of trx-bound selenium in the reaction mixture. The protein-bound selenium has metabolic significance in being stabilized in the divalent state, and it also produced the selenopersulfide (-S-SeH) form by the catalysis of E. coli trx reductase (TrxB).  相似文献   
8.
Here, we report the NMR solution structures of Mycobacterium tuberculosis (M. tuberculosis) thioredoxin C in both oxidized and reduced states, with discussion of structural changes that occur in going between redox states. The NMR solution structure of the oxidized TrxC corresponds closely to that of the crystal structure, except in the C‐terminal region. It appears that crystal packing effects have caused an artifactual shift in the α4 helix in the previously reported crystal structure, compared with the solution structure. On the basis of these TrxC structures, chemical shift mapping, a previously reported crystal structure of the M. tuberculosis thioredoxin reductase (not bound to a Trx) and structures for intermediates in the E. coli thioredoxin catalytic cycle, we have modeled the complete M. tuberculosis thioredoxin system for the various steps in the catalytic cycle. These structures and models reveal pockets at the TrxR/TrxC interface in various steps in the catalytic cycle, which can be targeted in the design of uncompetitive inhibitors as potential anti‐mycobacterial agents, or as chemical genetic probes of function. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
9.
We have previously shown that the natural diterpenoid derivative S3 induced Bim upregulation and apoptosis in a Bax/Bak-independent manner. However, the exact molecular target(s) of S3 and the mechanism controlling Bim upregulation are still not clear. Here, we identify that S3 targets the selenoproteins TrxR1 and TrxR2 at the selenocysteine residue of the reactive center of the enzymes and inhibits their antioxidant activities. Consequently, cellular ROS is elevated, leading to the activation of FOXO3a, which contributes to Bim upregulation in Bax/Bak-deficient cells. Moreover, S3 retards tumor growth in subcutaneous xenograft tumors by inhibiting TrxR activity in vivo. Our studies delineate the signaling pathway controlling Bim upregulation, which results in Bax/Bak-independent apoptosis and provide evidence that the compounds can act as anticancer agents based on mammalian TrxRs inhibition.  相似文献   
10.
Methionine (Met) in proteins can be oxidized to two diastereoisomers of methionine sulfoxide, Met‐S‐O and Met‐R‐O, which are reduced back to Met by two types of methionine sulfoxide reductases (MSRs), A and B, respectively. MSRs are generally supplied with reducing power by thioredoxins. Plants are characterized by a large number of thioredoxin isoforms, but those providing electrons to MSRs in vivo are not known. Three MSR isoforms, MSRA4, MSRB1 and MSRB2, are present in Arabidopsis thaliana chloroplasts. Under conditions of high light and long photoperiod, plants knockdown for each plastidial MSR type or for both display reduced growth. In contrast, overexpression of plastidial MSRBs is not associated with beneficial effects in terms of growth under high light. To identify the physiological reductants for plastidial MSRs, we analyzed a series of mutants deficient for thioredoxins f, m, x or y. We show that mutant lines lacking both thioredoxins y1 and y2 or only thioredoxin y2 specifically display a significantly reduced leaf MSR capacity (–25%) and growth characteristics under high light, related to those of plants lacking plastidial MSRs. We propose that thioredoxin y2 plays a physiological function in protein repair mechanisms as an electron donor to plastidial MSRs in photosynthetic organs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号