首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8075篇
  免费   329篇
  国内免费   225篇
  2023年   121篇
  2022年   54篇
  2021年   140篇
  2020年   175篇
  2019年   201篇
  2018年   206篇
  2017年   147篇
  2016年   167篇
  2015年   169篇
  2014年   197篇
  2013年   565篇
  2012年   152篇
  2011年   243篇
  2010年   211篇
  2009年   263篇
  2008年   282篇
  2007年   312篇
  2006年   292篇
  2005年   233篇
  2004年   254篇
  2003年   242篇
  2002年   220篇
  2001年   191篇
  2000年   168篇
  1999年   140篇
  1998年   132篇
  1997年   133篇
  1996年   144篇
  1995年   171篇
  1994年   184篇
  1993年   144篇
  1992年   148篇
  1991年   146篇
  1990年   139篇
  1989年   103篇
  1988年   126篇
  1987年   114篇
  1986年   89篇
  1985年   190篇
  1984年   207篇
  1983年   163篇
  1982年   241篇
  1981年   155篇
  1980年   153篇
  1979年   127篇
  1978年   68篇
  1977年   46篇
  1976年   59篇
  1974年   27篇
  1973年   26篇
排序方式: 共有8629条查询结果,搜索用时 15 毫秒
1.
Infliction of DNA damage initiates a complex cellular reaction – the DNA damage response – that involves both signaling and DNA repair networks with many redundancies and parallel pathways. Here, we reveal the three strategies that the simple multicellular eukaryote, C. elegans, uses to deal with DNA damage induced by light. Separately inactivating repair or replicative bypass of photo-lesions results in cellular hypersensitivity towards UV-light, but impeding repair of replication associated DNA breaks does not. Yet, we observe an unprecedented synergistic relationship when these pathways are inactivated in combination. C. elegans mutants that lack nucleotide excision repair (NER), translesion synthesis (TLS) and alternative end joining (altEJ) grow undisturbed in the dark, but become sterile when grown in light. Even exposure to very low levels of normal daylight impedes animal growth. We show that NER and TLS operate to suppress the formation of lethal DNA breaks that require polymerase theta-mediated end joining (TMEJ) for their repair. Our data testifies to the enormous genotoxicity of light and to the demand of multiple layers of protection against an environmental threat that is so common.  相似文献   
2.
Aminoacyl-tRNA synthetases catalyze ATP-dependent covalent coupling of cognate amino acids and tRNAs for ribosomal protein synthesis. Escherichia coli isoleucyl-tRNA synthetase (IleRS) exploits both the tRNA-dependent pre- and post-transfer editing pathways to minimize errors in translation. However, the molecular mechanisms by which tRNAIle organizes the synthetic site to enhance pre-transfer editing, an idiosyncratic feature of IleRS, remains elusive. Here we show that tRNAIle affects both the synthetic and editing reactions localized within the IleRS synthetic site. In a complex with cognate tRNA, IleRS exhibits a 10-fold faster aminoacyl-AMP hydrolysis and a 10-fold drop in amino acid affinity relative to the free enzyme. Remarkably, the specificity against non-cognate valine was not improved by the presence of tRNA in either of these processes. Instead, amino acid specificity is determined by the protein component per se, whereas the tRNA promotes catalytic performance of the synthetic site, bringing about less error-prone and kinetically optimized isoleucyl-tRNAIle synthesis under cellular conditions. Finally, the extent to which tRNAIle modulates activation and pre-transfer editing is independent of the intactness of its 3′-end. This finding decouples aminoacylation and pre-transfer editing within the IleRS synthetic site and further demonstrates that the A76 hydroxyl groups participate in post-transfer editing only. The data are consistent with a model whereby the 3′-end of the tRNA remains free to sample different positions within the IleRS·tRNA complex, whereas the fine-tuning of the synthetic site is attained via conformational rearrangement of the enzyme through the interactions with the remaining parts of the tRNA body.  相似文献   
3.
The potential of the Neisseria gonorrhoeae O-acetylpeptidoglycan esterase (Ape1a) for catalysing transacetylations in organic solvents with a number of carbohydrate acceptors was investigated. The performance of the enzyme was observed to improve as the polarity index of the solvent increased. The best transacetylation conditions were determined to be a 1:6 phosphate buffer/ethyl acetate system, where Ape1a catalysed approximately 28% acetylation of 4-methylumbelliferyl-N-acetylglucosamine using p-nitrophenyl acetate as donor. Further analysis of the acetylated products by reverse phase HPLC and ESI-mass spectrometry confirmed the presence of monoacetylated 4-methylumbelliferyl-N-acetylglucosamine. Under identical reaction conditions, the enzyme also performed transacetylations using ethyl acetate or vinyl acetate as donor. These results demonstrated the feasibility of using the bacterial cell wall enzyme Ape1a to generate hitherto unattainable compounds which may be used as antagonists of peptidoglycan-metabolizing enzymes.  相似文献   
4.
The acaricides clofentezine, hexythiazox and etoxazole are commonly referred to as ‘mite growth inhibitors’, and clofentezine and hexythiazox have been used successfully for the integrated control of plant mite pests for decades. Although they are still important today, their mode of action has remained elusive. Recently, a mutation in chitin synthase 1 (CHS1) was linked to etoxazole resistance. In this study, we identified and investigated a Tetranychus urticae strain (HexR) harboring recessive, monogenic resistance to each of hexythiazox, clofentezine, and etoxazole. To elucidate if there is a common genetic basis for the observed cross-resistance, we adapted a previously developed bulk segregant analysis method to map with high resolution a single, shared resistance locus for all three compounds. This finding indicates that the underlying molecular basis for resistance to all three compounds is identical. This locus is centered on the CHS1 gene, and as supported by additional genetic and biochemical studies, a non-synonymous variant (I1017F) in CHS1 associates with resistance to each of the tested acaricides in HexR. Our findings thus demonstrate a shared molecular mode of action for the chemically diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole as inhibitors of an essential, non-catalytic activity of CHS1. Given the previously documented cross-resistance between clofentezine, hexythiazox and the benzyolphenylurea (BPU) compounds flufenoxuron and cycloxuron, CHS1 should be also considered as a potential target-site of insecticidal BPUs.  相似文献   
5.
Human DNA polymerases (pols) η and ι are Y-family DNA polymerase paralogs that facilitate translesion synthesis past damaged DNA. Both polη and polι can be monoubiquitinated in vivo. Polη has been shown to be ubiquitinated at one primary site. When this site is unavailable, three nearby lysines may become ubiquitinated. In contrast, mass spectrometry analysis of monoubiquitinated polι revealed that it is ubiquitinated at over 27 unique sites. Many of these sites are localized in different functional domains of the protein, including the catalytic polymerase domain, the proliferating cell nuclear antigen-interacting region, the Rev1-interacting region, and its ubiquitin binding motifs UBM1 and UBM2. Polι monoubiquitination remains unchanged after cells are exposed to DNA-damaging agents such as UV light (generating UV photoproducts), ethyl methanesulfonate (generating alkylation damage), mitomycin C (generating interstrand cross-links), or potassium bromate (generating direct oxidative DNA damage). However, when exposed to naphthoquinones, such as menadione and plumbagin, which cause indirect oxidative damage through mitochondrial dysfunction, polι becomes transiently polyubiquitinated via Lys11- and Lys48-linked chains of ubiquitin and subsequently targeted for degradation. Polyubiquitination does not occur as a direct result of the perturbation of the redox cycle as no polyubiquitination was observed after treatment with rotenone or antimycin A, which both inhibit mitochondrial electron transport. Interestingly, polyubiquitination was observed after the inhibition of the lysine acetyltransferase KATB3/p300. We hypothesize that the formation of polyubiquitination chains attached to polι occurs via the interplay between lysine acetylation and ubiquitination of ubiquitin itself at Lys11 and Lys48 rather than oxidative damage per se.  相似文献   
6.
Abstract The relationship between antibiotic production and culture growth rate in Saccharopolyspora erythraea and Streptomyces hygroscopicus was manipulated by changing the growth-limiting substrate. Carbon- and nitrogen-limited cultures were studied and antibiotic synthesis was obtained in both cases in Saccharopolyspora erythraea cultures and in nitrogen-limited Streptomyces hygroscopicus cultures. In all cultures where antibiotic was detected, onset of antibiotic production coincided with the minimal protein synthesis rate. Further investigation in Saccharopolyspora erythraea cultures indicated that this corresponded to minimum ratio of charged to uncharged tRNA, i.e. when uncharged tRNA accumulated. This latter phenomenon was investigated in the presence of a protein synthesis inhibitor.  相似文献   
7.
The aim of this study was to analyze the growth response of HeLa cells over a prolonged period of time to a single exposure of physiological and supraphysiological concentrations of 4-hydroxynonenal (HNE), a peroxidation product of omega-6-polyunsaturated fatty acids. Furthermore, the growth modulating effect of serum factors, particularly albumin, on the growth pattern was examined. The effects of HNE on the growth rate and viability of the cells, as well as on the incorporation of labelled amino acids were monitored daily over a period of four days. Fetal calf serum not only had a growth stimualting effect but also modulated the action of HNE. In neither respect was albumin able to substitute for serum indicating that the influence of serum was not exerted via an albumin–HNE conjugate. HNE had a clear dose-dependent effect and a distinction could be made between a supraphysiological concentration (100 μM), which was primarily cytotoxic and a physiological range (below 10 μM) which showed growth modulatory effects. These effects consisted of a transient inhibition in the initial phase of the cell growth, which under optimal conditions (in presence of serum) was followed by a period of increased proliferation, compared to untreated control cultures, until confluence was attained. It is suggested that HNE is not only a toxic product of lipid peroxidation, but a physiological growth regulating factor as well.  相似文献   
8.
Mitogenic stimulation of protein synthesis is accompanied by an increase in elF-4E phosphorylation. The effect on protein synthesis by induction of differentiation is less well known. We treated P19 embryonal carcinoma cells with the differentiating agent retinoic acid and found that protein synthesis increased during the first hour of addition. However, the phosphorylation state, as well as the turnover of phosphate on elF-4E, remained unchanged. Apparently, the change in protein synthesis after RA addition is regulated by another mechanism than elF-4E phosphorylation. By using P19 cells overexpressing the EGF receptor, we show that the signal transduction pathway that leads to phosphorylation of elF-4E is present in P19 cells; the EGF-induced change in phosphorylation of elF-4E in these cells is likely to be regulated by a change in elF-4E phosphatase activity. These results suggest that the onset of retinoic acid-induced differentiation is triggered by a signal transduction pathway which involves changes in protein synthesis, but not elF-4E phosphorylation. © 1995 Wiley-Liss, Inc.  相似文献   
9.
《Journal of lipid research》2017,58(5):1021-1029
Consumption of the tomato carotenoid, lycopene, has been associated with favorable health benefits. Some of lycopene's biological activity may be due to metabolites resulting from cleavage of the lycopene molecule. Because of their structural similarity to the retinoic acid receptor (RAR) antagonist, β-apo-13-carotenone, the “first half” putative oxidative cleavage products of the symmetrical lycopene have been synthesized. All transformations proceed in moderate to good yield and some with high stereochemical integrity allowing ready access to these otherwise difficult to obtain terpenoids. In particular, the methods described allow ready access to the trans isomers of citral (geranial) and pseudoionone, important flavor and fragrance compounds that are not readily available isomerically pure and are building blocks for many of the longer apolycopenoids. In addition, all of the apo-11, apo-13, and apo-15 lycopenals/lycopenones/lycopenoic acids have been prepared. These compounds have been evaluated for their effect on RAR-induced genes in cultured hepatoma cells and, much like β-apo-13-carotenone, the comparable apo-13-lycopenone and the apo-15-lycopenal behave as RAR antagonists. Furthermore, molecular modeling studies demonstrate that the apo-13-lycopenone efficiently docked into the ligand binding site of RARα. Finally, isothermal titration calorimetry studies reveal that apo-13-lycopenone acts as an antagonist of RAR by inhibiting coactivator recruitment to the receptor.  相似文献   
10.
The synthesis of laminarahexaose is described. NMR studies of several of the intermediates leading to the β-1,3-glucan show anomalously small coupling constants for some of the C-1 hydrogens. An X-ray structure for the protected hexasaccharide shows that the small coupling constants are due to some of the glucopyranose rings adopting a twist-boat conformation. The X-ray studies also explain other unexpected NMR observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号