首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1973篇
  免费   462篇
  国内免费   617篇
  2024年   2篇
  2023年   87篇
  2022年   80篇
  2021年   122篇
  2020年   142篇
  2019年   179篇
  2018年   147篇
  2017年   162篇
  2016年   110篇
  2015年   101篇
  2014年   123篇
  2013年   128篇
  2012年   92篇
  2011年   108篇
  2010年   101篇
  2009年   107篇
  2008年   129篇
  2007年   138篇
  2006年   108篇
  2005年   108篇
  2004年   100篇
  2003年   91篇
  2002年   71篇
  2001年   65篇
  2000年   56篇
  1999年   49篇
  1998年   51篇
  1997年   38篇
  1996年   34篇
  1995年   36篇
  1994年   35篇
  1993年   16篇
  1992年   22篇
  1991年   14篇
  1990年   18篇
  1989年   12篇
  1988年   14篇
  1987年   10篇
  1986年   3篇
  1985年   7篇
  1984年   10篇
  1983年   5篇
  1982年   9篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1958年   3篇
排序方式: 共有3052条查询结果,搜索用时 15 毫秒
1.
Nitrogen (N) resorption from senescing leaves is an important mechanism of N conservation for terrestrial plant species, but changes in N-resorption traits over wide-range and multi-level N addition gradients have not been well characterized. Here, a 3-year N addition experiment was conducted to determine the effects of N addition on N resorption of six temperate grassland species belonging to three different life-forms: Stipa krylovii Roshev. (grass), Cleistogenes squarrosa (T.) Keng (grass), Artemisia frigida Willd. (semishrub), Melissitus ruthenica C.W.Wang (semishrub and N-fixer), Potentilla acaulis L. (forb) and Allium bidentatum Fisch.ex Prokh. (forb). Generally, N concentrations in green leaves increased asymptotically for all species. N concentrations in senescent leaves for most species (5/6) also increased asymptotically, except that the N concentration in senescent leaves of A. bidentatum was independent of N addition. N-resorption efficiency decreased with increasing N addition level only for S. krylovii and A. frigida, while no clear responses were found for other species. These results suggest that long-term N fertilization increased N uptake and decreased N-resorption proficiency, but the effects on N-resorption efficiency were species-specific for different temperate grassland species in northern China. These inter-specific differences in N resorption may influence the positive feedback between species dominance and N availability and thus soil N cycling in the grassland ecosystem in this region.  相似文献   
2.
Aims The shrublands of northern China have poor soil and nitrogen (N) deposition has greatly increased the local soil available N for decades. Shrub growth is one of important components of C sequestration in shrublands and litterfall acts as a vital link between plants and soil. Both are key factors in nutrient and energy cycling of terrestrial ecosystems, which greatly affected by nitrogen (N) addition (adding N fertilizer to the surface soil directly). However, the effects and significance of N addition on C sequestration and litterfall in shrublands remain unclear. Thus, a study was designed to investigate how N deposition and related treatments affected shrublands growth related to C sequestration and litterfall production of Vitex negundo var. heterophylla and Spiraea salicifolia in Mt. Dongling region of China.
Methods A N enrichment experiment has been conducted for V. negundo var. heterophylla and S. salicifolia shrublands in Mt. Dongling, Beijing, including four N addition treatment levels (control (N0, 0 kg N·hm-2·a-1), low N (N1, 20 kg N·hm-2·a-1), medium N (N2, 50 kg N·hm-2·a-1) and high N (N3, 100 kg N·hm-2·a-1)). Basal diameter and plant height of shrub were measured from 2012-2013 within all treatments, and allometric models for different species of shrub’s live branch, leaf and root biomass were developed based on independent variables of basal diameter and plant height, which will be used to calculate biomass increment of shrub layer. Litterfall (litterfall sometimes is named litter, referring to the collective name for all organic matter produced by the aboveground part of plants and returned to the surface, and mainly includes leaves, bark, dead twigs, flowers and fruits.) also was investigated from 2012-2013 within all treatments.
Important findings The results showed 1) mean basal diameter of shrubs in the V. negundo var. heterophylla and S. salicifolia shrublands were increased by 1.69%, 2.78%, 2.51%, 1.80% and 1.38%, 1.37%, 1.59%, 2.05% every year; 2) The height growth rate (the shrub height relative growth rate is defined with the percentage increase of plant height) of shrubs in the V. negundo var. heterophylla and S. salicifolia shrublands were 8.36%, 8.48%, 9.49%, 9.83% and 2.12%, 2.86%, 2.36%, 2.52% every year, respectively. Thee results indicated that N deposition stimulated growth of shrub layer both in V. negundo var. heterophylla and S. salicifolia shrublands, but did not reach statistical significance among all nitrogen treatments. The above-ground biomass increment of shrub layer in the V. negundo var. heterophylla and S. salicifolia shrublands were 0.19, 0.23, 0.14, 0.15 and 0.027, 0.025, 0.032, 0.041 t C·hm-2·a-1 respectively, which demonstrated that short-term N addition had no significant effects on the accumulation of C storage of the two shrublands. The litter production of the V. negundo var. heterophylla and S. salicifolia communities in 2013 were 135.7 and 129.6 g·m-2 under natural conditions, respectively. Nitrogen addition promoted annual production of total litterfall and different components of litterfall to a certain extent, but did not reach statistical significance among all nitrogen treatments. Above results indicated that short-term fertilization, together with extremely low soil moisture content and other related factors, lead to inefficient use of soil available nitrogen and slow response of shrublands to N addition treatments.  相似文献   
3.
In late‐successional environments, low in available nutrient such as the forest understory, herbaceous plant individuals depend strongly on their mycorrhizal associates for survival. We tested whether in temperate European forests arbuscular mycorrhizal (AM) woody plants might facilitate the establishment of AM herbaceous plants in agreement with the mycorrhizal mediation hypothesis. We used a dataset spanning over 400 vegetation plots in the Weser‐Elbe region (northwest Germany). Mycorrhizal status information was obtained from published resources, and Ellenberg indicator values were used to infer environmental data. We carried out tests for both relative richness and relative abundance of herbaceous plants. We found that the subset of herbaceous individuals that associated with AM profited when there was a high cover of AM woody plants. These relationships were retained when we accounted for environmental filtering effects using path analysis. Our findings build on the existing literature highlighting the prominent role of mycorrhiza as a coexistence mechanism in plant communities. From a nature conservation point of view, it may be possible to promote functional diversity in the forest understory through introducing AM woody trees in stands when absent.  相似文献   
4.
One potential, unintended ecological consequence accompanying forest restoration is a shift in invasive animal populations, potentially impacting conservation targets. Eighteen years after initial restoration (ungulate exclusion, invasive plant control, and out planting native species) at a 4 ha site on Maui, Hawai'i, we compared invasive rodent communities in a restored native dry forest and adjacent non‐native grassland. Quarterly for 1 year, we trapped rodents on three replicate transects (107 rodent traps) in each habitat type for three consecutive nights. While repeated trapping may have reduced the rat (Black rat, Rattus rattus) population in the forest, it did not appear to reduce the mouse (House mouse, Mus musculus) population in the grassland. In unrestored grassland, mouse captures outnumbered rat captures 220:1, with mice averaging 54.9 indiv./night versus rats averaging 0.25 indiv./night. In contrast, in restored native forest, rat captures outnumbered mouse captures by nearly 5:1, averaging 9.0 indiv./night versus 1.9 indiv./night for mice. Therefore, relatively recent native forest restoration increased Black rat abundance and also increased their total biomass in the restored ecosystem 36‐fold while reducing House mouse biomass 35‐fold. Such a community shift is worrisome because Black rats pose a much greater threat than do mice to native birds and plants, perhaps especially to large‐seeded tree species. Land managers should be aware that forest restoration (i.e. converting grassland to native forest) can invoke shifts in invasive rodent populations, potentially favoring Black rats. Without intervention, this shift may pose risks for intended conservation targets and modify future forest restoration trajectories.  相似文献   
5.
Hydraulic lift occurs in some deep-rooted shrub and herbaceous species. In this process, water taken up by deep roots from the moist subsoil is delivered to the drier topsoil where it is later reabsorbed by shallow roots. However, little is known about the existence of hydraulic lift in shallow-rooted xeric species. The objectives of this study were 1) to ascertain whether hydraulic lift exists in Gutierrezia sarothrae (broom snakeweed), a widespread North American desert species with a shallow root system, grown in pot and field conditions and 2) if it does, how much water can be transferred from the subsoil to the 30 cm topsoil during the night. Snakeweed seedlings were transplanted in buried pots allowing the deeper roots to grow into the subsoil 30 cm below the surface. Soil water content inside and outside of the pot was measured seasonally and diurnally with time domain reflectometry technique (TDR). An increase in water content was detected in the pot after the plant was covered for 3 h by an opaque plastic bag during the day, suggesting hydraulic lift from deeper depths and exudation of water into the drier topsoil. Root exudation was also observed on native range sites dominated by snakeweed. Water efflux in the pot was 271 g per plant per night. which was equivalent to 15.3% of the extrapolated, porometer-derived whole-plant daily transpiration. Hydraulic lift observed in Gutierrezia improved water uptake during the day when evaporative demand is high and less water is available in the topsoil. We concluded that hydraulic lift might help snakeweed to alleviate the effect of water stress.  相似文献   
6.
Vascular plant species richness is known to often decrease with both increasing latitude and increasing altitude. However, a number of studies have shown the reverse trend and the primary cause of these gradients remains unknown. In the present work, generalized linear models were used to assess the relative importance of latitude and altitude as well as of a number of other factors (mean annual precipita-tion, slope, substrate and forest type) on species richness in temperate rainforests of New Zealand. The effect of Southern beech ( Nothofagus spp.) as dominant canopy species on total species richness was shown to be much smaller than postulated in most previous studies. Within the region studied, altitude had by far the strongest effect on species richness. This effect was independent of latitude and was significant for woody but not for herbaceous vegetation.  相似文献   
7.
8.
9.
为研究青藏高原草地承载力的空间演变特征并对其进行预警,以已有的青藏高原净初级生产力数据为基础,核算了该地区的草地理论载畜量及演变趋势,并结合县域实际存栏量,划定了草地承载力的预警等级。结果表明:(1)青藏高原草地承载力整体呈东高西低的格局,其中高寒草原和高寒草甸是该地区草地承载力的主要组成部分;(2)2000-2015年,青藏高原理论载畜量由8614.89万羊单位增至9451.53万羊单位;(3)青藏高原整体处于超载状态,2000-2010年超载状况加剧,至2015年超载状况稍有缓解,草畜平衡指数由67.88%增至79.90%,再降至67.91%。目前亟需优先控制72个红色预警县(超载状态正在加剧)的牲畜存栏量,避免超载状况进一步恶化。未来需要通过控制牲畜存栏量、调整畜牧区发展布局和提高草地生产力等多项措施的结合来改善青藏高原地区的草地承载状况,维持草地生态系统的可持续发展。  相似文献   
10.
The behavior of adults and young at the time of fledging is one of the least understood aspects of the breeding ecology of birds. Current hypotheses propose that fledging occurs either as a result of parent‐offspring conflict or nestling choice. We used video recordings to monitor the behavior of nestling and adult grassland songbirds at the time of fledging. We observed 525 nestlings from 166 nests of 15 bird species nesting in grasslands of Alberta, Canada, and Wisconsin, USA. Overall, 78% of nestlings used terrestrial locomotion for fledging and 22% used wing‐assisted locomotion. Species varied in propensity for using wing‐assisted locomotion when fledging, with nestling Grasshopper Sparrows (Ammodramus savannarum) and Henslow's Sparrows (Centronyx henslowii) often doing so (47% of fledgings) and nestling Song Sparrows (Melospiza melodia), Common Yellowthroats (Geothlypis trichas), and Chestnut‐collared Longspurs (Calcarius ornatus) rarely doing so (3.5% of fledgings). For 390 fledging events at 127 nests, camera placement allowed adults near nests to be observed. Of these, most young fledged (81.5%) when no adult was present at nests. Of 72 fledging events that occurred when an adult was either at or approaching a nest, 49 (68.1%) involved feeding. Of those 49 fledgings, 30 (62.1%) occurred when one or more nestlings jumped or ran from nests to be fed as an adult approached nests. The low probability of nestlings fledging while an adult was at nests, and the tendency of young to jump or run from nests when adults did approach nests with food minimize opportunities for parents to withhold food to motivate nestlings to fledge. These results suggest that the nestling choice hypothesis best explains fledging by nestlings of ground‐nesting grassland songbirds, and fledging results in families shifting from being place‐based to being mobile and spatially dispersed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号