首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7865篇
  免费   618篇
  国内免费   1300篇
  2024年   17篇
  2023年   157篇
  2022年   242篇
  2021年   320篇
  2020年   359篇
  2019年   344篇
  2018年   278篇
  2017年   280篇
  2016年   294篇
  2015年   260篇
  2014年   353篇
  2013年   658篇
  2012年   308篇
  2011年   374篇
  2010年   276篇
  2009年   478篇
  2008年   482篇
  2007年   411篇
  2006年   372篇
  2005年   387篇
  2004年   258篇
  2003年   252篇
  2002年   245篇
  2001年   177篇
  2000年   158篇
  1999年   149篇
  1998年   130篇
  1997年   141篇
  1996年   145篇
  1995年   150篇
  1994年   159篇
  1993年   140篇
  1992年   117篇
  1991年   101篇
  1990年   120篇
  1989年   90篇
  1988年   65篇
  1987年   53篇
  1986年   70篇
  1985年   84篇
  1984年   79篇
  1983年   38篇
  1982年   39篇
  1981年   29篇
  1980年   23篇
  1979年   32篇
  1978年   21篇
  1977年   38篇
  1976年   15篇
  1975年   5篇
排序方式: 共有9783条查询结果,搜索用时 15 毫秒
1.
The antimicrobial activity of plant extract of Peganum harmala, a medicinal plant has been studied already. However, knowledge about bacterial diversity associated with different parts of host plant antagonistic to different human pathogenic bacteria is limited. In this study, bacteria were isolated from root, leaf and fruit of plant. Among 188 bacterial isolates isolated from different parts of the plant only 24 were found to be active against different pathogenic bacteria i.e. Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecium, Enterococcus faecalis and Pseudomonas aeruginosa. These active bacterial isolates were identified on the basis of 16S rRNA gene analysis. Total population of bacteria isolated from plant was high in root, following leaf and fruit. Antagonistic bacteria were also more abundant in root as compared to leaf and fruit. Two isolates (EA5 and EA18) exhibited antagonistic activity against most of the targeted pathogenic bacteria mentioned above. Some isolates showed strong inhibition for one targeted pathogenic bacterium while weak or no inhibition for others. Most of the antagonistic isolates were active against MRSA, following E. faecium, P. aeruginosa, E. coli and E. faecalis. Taken together, our results show that medicinal plants are good source of antagonistic bacteria having inhibitory effect against clinical bacterial pathogens.  相似文献   
2.
After a 2 h exposure of intact soybean nodules to high concentrations of NaCl (100mol m?3) or oxygen (8OkPa O2), morphometric computations carried out using an image analysis technique on semi-thin sections showed that both treatments induced a decrease in the area of the inner-cortex cells, which were then characterized by a tangential elongation. In contrast, no significant change in area occurred in the middle-cortex cells although their elongation decreased. Electron microscopic observations showed that in the inner-cortex cells changes included the presence of wall infoldings, an enlarged periplasmic space and a lobate nucleus whose chromatin distribution differed from that of the control. Structural changes also occurred in the endoplasmic reticulum, microbodies, mitochondria and plastids. From several of these changes, which are similar to those noted in osmocontractil cells in response to external stimuli, it can be hypothesized that the inner cortex may provide a potential mechanism for the control of oxygen diffusion through the nodules.  相似文献   
3.
Microalgae-nitrifying bacteria consortia have gained attention because photooxygenation of algae can supply oxygen to bacteria which eliminates the need for costly mechanical aeration. However, nitrifying bacteria are known to suffer from photoinhibition. In this study, we developed “Light-shielding hydrogel”, in which bacteria were immobilized in hydrogel and light-shielding particles (carbon black) were incorporated, and evaluated its effectiveness to mitigate photoinhibition for bacteria under strong light irradiation. For comparison, “Hydrogel”, in which bacteria were immobilized in hydrogel without carbon black, and “Dispersion” which was simply suspended bacteria were prepared. At 1600 μmol photons m−2 s–1, the nitrification performance markedly decreased to 15.1 and 48.0% compared to the dark condition in the Dispersion and the Hydrogel, respectively. Meanwhile, it was successfully maintained for the Light-shielding hydrogel. Our results showed that the effectiveness of light-shielding hydrogel to mitigate photoinhibition on nitrifying bacteria even under strong light irradiation.  相似文献   
4.
Frankia is the diverse bacterial genus that fixes nitrogen within root nodules of actinorhizal trees and shrubs. Systematic and ecological studies of Frankia have been hindered by the lack of morphological, biochemical, or other markers to readily distinguish strains. Recently, nucleotide sequence of 16 S RNA from the small ribosomal subunit has been used to classify and identify a variety of microorganisms. We report nucleotide sequences from portions of the 16 S ribosomal RNA from Frankia strains AcnI1 isolated from Alnus viridis ssp. crispa (Ait.) Turrill and PtI1 isolated from Purshia tridentata (Pursh) DC. The number of nucleotide base substitutions and gaps we find more than doubles the previously reported sequence diversity for the same variable regions within other strains of Frankia.  相似文献   
5.
The dissolution potential of five cyanogenic bacteria was studied at 25°C during 32 days using granite material from the Damma glacier (Central Alps, Switzerland) as the sole source of nutrients. The bacterial species Pseudomonas fluorescens and Pseudomonas sp. CCOS 191 were the most effective to exudate various organic acids and consequently mobilized Fe. The molecular mechanisms include both, proton-promoted and ligand-promoted dissolution, preferentially at pH below 5 and in the pH range between 5.0 and 5.8, respectively. In addition, bacterially produced cyanide plays a minor role through the formation of soluble hexacyanoferrate complexes. To our knowledge, this study is the first that reveals the direct measurement of metal-cyanide complexes formed during biotic granite weathering.  相似文献   
6.
In our previous studies, we observed the biological control effect of lactic acid bacteria strains (LABs) KLF01, KLC02 and KPD03 against different plant pathogenic bacteria in vitro against Ralstonia solanacearum, and strains KLF01 and KLC02 against Pectobacterium carotovorum under greenhouse and field experiments, respectively. In this study, we observed the efficacy of these bacteria against bacterial spot pathogen (Xanthomonas campestris pv. vesicatoria) and their plant growth-promoting activities in pepper (Capsicum annuum L. var. annuum), under greenhouse and field conditions. LABs significantly (P < 0.05) reduced bacterial spot on pepper plants in comparison to untreated plants in both the greenhouse and the field experiments. The plant growth-promoting effect of LABs on pepper varied; some strains had a significant effect on growth promotion (P < 0.05) compared with untreated plants, while some showed no significant effect in the greenhouse and field experiments. Additionally, LABs were able to colonise roots, produce indole-3-acetic acid (IAA), siderophores and solubilise phosphate. These findings indicate that application of LABs could provide a promising alternative for the management of bacterial spot disease in pepper plants and could therefore be used as a healthy plant growth-promoting agent.  相似文献   
7.
Understanding the mechanisms of resilience of coral reefs to anthropogenic stressors is a critical step toward mitigating their current global decline. Coral–bacteria associations are fundamental to reef health and disease, but direct observations of these interactions remain largely unexplored. Here, we use novel technology, high-speed laser scanning confocal microscopy on live coral (Pocillopora damicornis), to test the hypothesis that corals exert control over the abundance of their associated bacterial communities by releasing (‘shedding'') bacteria from their surface, and that this mechanism can counteract bacterial growth stimulated by organic inputs. We also test the hypothesis that the coral pathogen Vibrio coralliilyticus can evade such a defense mechanism. This first report of direct observation with high-speed confocal microscopy of living coral and its associated bacterial community revealed a layer (3.3–146.8 μm thick) on the coral surface where bacteria were concentrated. The results of two independent experiments showed that the bacterial abundance in this layer was not sensitive to enrichment (5 mg l−1 peptone), and that coral fragments exposed to enrichment released significantly more bacteria from their surfaces than control corals (P<0.01; 35.9±1.4 × 105 cells cm−2 coral versus 1.3±0.5 × 105 cells cm−2 coral). Our results provide direct support to the hypothesis that shedding bacteria may be an important mechanism by which coral-associated bacterial abundances are regulated under organic matter stress. Additionally, the novel ability to watch this ecological behavior in real-time at the microscale opens an unexplored avenue for mechanistic studies of coral–microbe interactions.  相似文献   
8.
《Cell》2021,184(23):5728-5739.e16
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   
9.
A bioactive peptide of 8595 Da was purified from the cell free supernatant of Lactococcus garvieae subsp. bovis BSN307T. MALDI MS/MS peptide mapping and the data base search displayed no significant similarity to any reported antimicrobial peptide of LAB. This peptide at a dose concentration of 200 µg ml−1 inhibited the growth of both Gram-positive and Gram-negative bacteria by 58–89% and a dose of 500 µg ml−1 scavenged 50% of DPPH-free radicals generated. Interestingly, cytotoxicity assay demonstrated that 17 µg ml−1 of peptide selectively inhibited 50% proliferation of mammalian cancer cell lines HeLa and MCF-7 whereas normal H9c2 cells remained unaffected. Fluorescent microscopic analysis after DAPI nuclear staining of HeLa cells showed characteristics of apoptosis and activation of caspase-3 was ascertained by caspase-3 fluorescence assay.  相似文献   
10.
An organophosphorus pesticide malathion biodegradation was investigated by using the bacteria Ochrobactrum sp. M1D isolated from a soil sample of peach orchards in Palampur, District Kangra, Himachal Pradesh (India). The bacterium was able to utilize malathion as the sole source of carbon and energy. The isolated bacterium was found psychrotolerant and could degrade 100% of 100 mg l−1 malathion in minimal salt medium at 20°C, pH 7·0 within 12 days with no major significant metabolites left at the end of the study. Through GCMS analysis, methyl phosphate, diethyl maleate, and diethyl 2-mercaptosuccinate were detected and identified as the major pathway metabolites. Based on the GCMS profile, three probable degradation pathways were interpreted. The present study is the first report of malathion biodegradation at both the psychrophilic and mesophilic conditions by any psychrotolerant strain and also through multiple degradation pathways. In the future, the strain can be explored to bio-remediate the malathion contaminated soil in the cold climatic region and to utilize the enzymatic systems for advanced biotechnology applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号