首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1003篇
  免费   241篇
  国内免费   23篇
  2024年   1篇
  2023年   14篇
  2022年   12篇
  2021年   15篇
  2020年   54篇
  2019年   41篇
  2018年   66篇
  2017年   60篇
  2016年   54篇
  2015年   64篇
  2014年   70篇
  2013年   117篇
  2012年   50篇
  2011年   97篇
  2010年   58篇
  2009年   83篇
  2008年   49篇
  2007年   52篇
  2006年   49篇
  2005年   41篇
  2004年   33篇
  2003年   22篇
  2002年   21篇
  2001年   22篇
  2000年   17篇
  1999年   15篇
  1998年   12篇
  1997年   4篇
  1996年   1篇
  1995年   12篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   9篇
  1990年   4篇
  1989年   3篇
  1986年   1篇
  1985年   6篇
  1984年   3篇
  1983年   7篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有1267条查询结果,搜索用时 31 毫秒
1.
Developing novel materials that tolerate thickness variations of the active layer is critical to further enhance the efficiency of polymer solar cells and enable large‐scale manufacturing. Presently, only a few polymers afford high efficiencies at active layer thickness exceeding 200 nm and molecular design guidelines for developing successful materials are lacking. It is thus highly desirable to identify structural factors that determine the performance of semiconducting conjugated polymers in thick‐film polymer solar cells. Here, it is demonstrated that thiophene rings, introduced in the backbone of alternating donor–acceptor type conjugated polymers, enhance the fill factor and overall efficiency for thick (>200 nm) solar cells. For a series of fluorinated semiconducting polymers derived from electron‐rich benzo[1,2‐b:4,5‐b′]dithiophene units and electron‐deficient 5,6‐difluorobenzo[2,1,3]thiazole units a steady increase of the fill factor and power conversion efficiency is found when introducing thiophene rings between the donor and acceptor units. The increased performance is a synergistic result of an enhanced hole mobility and a suppressed bimolecular charge recombination, which is attributed to more favorable polymer chain packing and finer phase separation.  相似文献   
2.
3.
Improving the growth and pigment accumulation of microalgae by electrochemical approaches was considered a novel and promising method. In this research, we investigated the effect of conductive polymer poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) dispersible in water on growth and pigment accumulation of Haematococcus lacustris and Euglena gracilis. The results revealed that effect of PEDOT:PSS was strongly cell-dependent and each cell type has its own peculiar response. For H. lacustris, the cell density in the 50 mg·l−1 treatment group increased by 50·27%, and the astaxanthin yield in the 10 mg·l−1 treatment group increased by 37·08%. However, under the high concentrations of PEDOT:PSS treatment, cell growth was significantly inhibited, and meanwhile, the smaller and more active zoospores were observed, which reflected the changes in cell life cycle and growth mode. Cell growth of E. gracilis in all the PEDOT:PSS treatment groups were notably inhibited. Chlorophyll a content in E. gracilis decreased while chlorophyll b content increased in response to the PEDOT:PSS treatment. The results laid a foundation for further development of electrochemical methods to promote microalgae growth and explore the interactions between conductive polymers and microalgae cells.  相似文献   
4.
An advanced electro-active dry adhesive,which was composed of a mushroom-shaped fibrillar dry adhesive array actuated by an Ionic Polymer Metal Composite (IPMC) artificial muscle reinforced with nitrogen-doped carbon nanocages (NCNCs),was developed to imitate the actuation of a gecko's toe.The properties of the NCNC-reinforced Nafion membrane,the electromechanical properties of the NCNC-reinforced IPMC,and the related electro-active adhesion ability were investigated.The NCNCs were uniformly dispersed in the 0.1 wt% NCNC/Nafion membrane,and there was a seamless connection with no clear interface between the dry adhesive and the IPMC.Our 0.1 wt% NCNC/Nafion-IPMC actuator shows a displacement and force that are 1.6-2 times higher than those of the recast Nafion-IPMC.This is due to the increased water uptake (25.39%) and tensile strength (24.5 MPa) of the specific 3D hollow NCNC-reinforced Nafion membrane,as well as interactions between the NCNCs and the sulfonated groups of the Nafion.The NCNC/Nafion-IPMC was used to effectively actuate the mushroom-shaped dry adhesive.The normal adhesion forces were 7.85 mN,12.1 mN,and 51.7 mN at sinusoidal voltages of 1.5 V,2.5 V,and 3.5 V,respectively,at 0.1 Hz.Under the bionic leg trail,the normal and shear forces were approximately 713.5 mN (159 mN·cm-2) and 1256.6 mN (279 mN·cm-2),respectively,which satisfy the required adhesion.This new electro-active dry adhesive can be applied for active,distributed actuation and flexible grip in robots.  相似文献   
5.
Perylene diimide (PDI) with high electron affinities are promising candidates for applications in polymer solar cells (PSCs). In addition, the strength of π‐deficient backbones and end‐groups in an n‐type self‐dopable system strongly affects the formed end‐group‐induced electronic interactions. Herein, a series of amine/ammonium functionalized PDIs with excellent alcohol solubility are synthesized and employed as electron transporting layers (ETLs) in PSCs. The electron transfer properties of the resulting PDIs are dramatically tuned by different end‐groups and π‐deficient backbones. Notably, electron transfer is observed directly in solution in self‐doped PDIs for the first time. A significantly enhanced power conversion efficiency of 10.06% is achieved, when applying the PDIs as ETLs in PTB7‐Th:PC71BM‐based PSCs. These results demonstrate the potential of n‐type organic semiconductors with stable n‐type doping capability and facile solution processibility for future applications of energy transition devices.  相似文献   
6.
A range of granular sludges was taken from industrial anaerobic sludge blanket reactors treating a wide variety of wastewaters and a comparison was made between the polymers which were extractable from the granules and their internal structures. The study of the internal structure, using sequential staining of ultra-thin sections, showed the complexity of granular sludges. Much of the area was occupied by Gram-negative cells and the area which stained positive for protein was found to increase nearer the centre of the granules. This was accompanied by a decrease in the carbohydrate positive areas. Positive areas for lipid were widespread throughout the granules. Changes in the internal structure were observed when the type of wastewater treated by the granules was changed and a comparison between sludges treating the same type of wastewater showed that factors other than the nature of the substrate must be considered as parameters which will affect the structure of the granules. Although an appreciable variation in the granule strengths was noted, it was not possible to relate these differences, on an overall basis, to either the internal structure or the chemical composition of the extracted polymers. However, an examination of data for granules produced during the treatment of nominally similar wastes did suggest that there would be a relationship between polymer composition and granule strength in these cases.  相似文献   
7.
All‐polymer solar cells (all‐PSCs) utilizing p‐type polymers as electron‐donors and n ‐typepolymers as electron‐acceptors have attracted a great deal of attention, and their efficiencies have been improved considerably. Here, five polymer donors with different molecular orientations are synthesized by random copolymerization of 5‐fluoro‐2,1,3‐benzothiadiazole with different relative amounts of 2,2′‐bithiophene (2T) and dithieno[3,2‐b;2′,3′‐d]thiophene (DTT). Solar cells are prepared by blending the polymer donors with a naphthalene diimide‐based polymer acceptor (PNDI) or a [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) acceptor and their morphologies and crystallinity as well as optoelectronic, charge‐transport and photovoltaic properties are studied. Interestingly, charge generation in the solar cells is found to show higher dependence on the crystal orientation of the donor polymer for the PNDI‐based all‐PSCs than for the conventional PC71BM‐based PSCs. As the population of face‐on‐oriented crystallites of the donor increased in PNDI‐based PSC, the short‐circuit current density (JSC) and external quantum efficiency of the devices are found to significantly improve. Consequently, device efficiency was enhanced of all‐PSC from 3.11% to 6.01%. The study reveals that producing the same crystal orientation between the polymer donor and acceptor (face‐on/face‐on) is important in all‐PSCs because they provide efficient charge transfer at the donor/acceptor interface.  相似文献   
8.
9.
质粒pRSET-A前导肽串联多聚体的构建及其多克隆抗体制备*   总被引:1,自引:0,他引:1  
质粒pRSET-A是一个常用的高效原核表达载体,编码一N端含组氨酸标签(6×His)的34aa前导肽序列,以方便利用抗组氨酸标签抗体鉴定或纯化所表达的重组蛋白。本实验设计一对两侧含编码疏水性氨基酸密码子的引物,经过扩增前导序列10~34aa基因序列,并重新克隆入质粒pRSET-A构建串联二聚体后,再利用质粒pRSET-A的BamH I / Bgl II同尾酶克隆位点,经一系列简单的酶切和连接,快速构建这一前导肽中不含组氨酸标签序列的串联多聚体基因,并成功表达其六聚体重组蛋白。将此重组蛋白主动免疫山羊,获得了能够特异地识别pRSET-A编码的N端前导肽序列的抗体。结果显示,所制备的羊抗10~34aa前导肽抗体能够识别pRSET-A指导表达的含有完整前导肽的重组蛋白,但不能识别不含10~34aa序列的重组蛋白;同时,利用同位酶技术可以快速高效构建短肽的串联多聚体以制备具有高免疫原性的亚单位疫苗或免疫调控物质。  相似文献   
10.
The biologically important pyridoxinato(1−) ligand (anionic vitamin B6) shows the rare phenolate-hydroxymethyl chelation plus bridging mode through the pyridine-nitrogen atom towards zinc(II) to give the one-dimensional (1D) coordination polymer {(acetato-κO)-aqua-μ-[2-methyl-3-oxy-4,5-di(hydroxymethyl)pyridine-κN:O,O′]zinc(II)}·monohydrate with polar packing of adjacent chains along the polar c axis (in space group Pc) through strong inter-chain hydrogen bonding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号