首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   811篇
  免费   102篇
  国内免费   96篇
  2023年   28篇
  2022年   26篇
  2021年   26篇
  2020年   42篇
  2019年   33篇
  2018年   43篇
  2017年   29篇
  2016年   39篇
  2015年   36篇
  2014年   40篇
  2013年   46篇
  2012年   26篇
  2011年   44篇
  2010年   30篇
  2009年   47篇
  2008年   57篇
  2007年   42篇
  2006年   53篇
  2005年   38篇
  2004年   30篇
  2003年   39篇
  2002年   24篇
  2001年   23篇
  2000年   22篇
  1999年   21篇
  1998年   14篇
  1997年   13篇
  1996年   5篇
  1995年   15篇
  1994年   4篇
  1993年   7篇
  1992年   7篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   10篇
  1971年   4篇
排序方式: 共有1009条查询结果,搜索用时 15 毫秒
1.
M. Ohsawa 《Plant Ecology》1995,121(1-2):3-10
A new template for mountain vegetation zonation along latitudinal gradients is proposed for examining geographical pattern of various forest attributes in humid monsoon Asia. The contrasting temperature regime in tropical and temperate mountains, i.e., the former is a non-seasonal, temperature-sum controlled environment, and the latter is a seasonal, low temperature limiting environment, leads to different altitudinal patterns of tree height distribution and species richness. In the tropical mountains, both tree height and species richness decrease steeply, and the tree height often stepwise. The decline of tree height and species diversity in the temperate mountains is far less pronounced except near the forest limit. Both trends are explained by their temperature regime.  相似文献   
2.
  • Intraspecific trait variation (ITV; i.e. variability in mean and/or distribution of plant attribute values within species) can occur in response to multiple drivers. Environmental change and land‐use legacies could directly alter trait values within species but could also affect them indirectly through changes in vegetation cover. Increasing variability in environmental conditions could lead to more ITV, but responses might differ among species. Disentangling these drivers on ITV is necessary to accurately predict plant community responses to global change.
  • We planted herb communities into forest soils with and without a recent history of agriculture. Soils were collected across temperate European regions, while the 15 selected herb species had different colonizing abilities and affinities to forest habitat. These mesocosms (384) were exposed to two‐level full‐factorial treatments of warming, nitrogen addition and illumination. We measured plant height and specific leaf area (SLA).
  • For the majority of species, mean plant height increased as vegetation cover increased in response to light addition, warming and agricultural legacy. The coefficient of variation (CV) for height was larger in fast‐colonizing species. Mean SLA for vernal species increased with warming, while light addition generally decreased mean SLA for shade‐tolerant species. Interactions between treatments were not important predictors.
  • Environmental change treatments influenced ITV, either via increasing vegetation cover or by affecting trait values directly. Species’ ITV was individualistic, i.e. species responded to different single resource and condition manipulations that benefited their growth in the short term. These individual responses could be important for altered community organization after a prolonged period.
  相似文献   
3.
北京西山侧柏林冠层不同高度处叶片水分利用效率   总被引:2,自引:0,他引:2  
以北京西山广泛分布的侧柏林为研究对象,综合考虑冠层不同高度处气象因子、大气CO2浓度以及大气CO2中碳同位素组成的差异,对其冠层不同高度处叶片的瞬时水分利用效率和短期水分利用效率分别进行了测定,以期为区域森林生态系统固碳与耗水研究提供理论依据,为区域森林生态系统经营与维护提供技术支撑.结果表明: 侧柏林冠层不同高度处叶片的瞬时水分利用效率随冠层高度的变化规律表现为上层>中层>下层,多种气象因子协同影响气孔运动,使瞬时水分利用效率受气孔限制;侧柏林冠层不同高度处的环境因子、大气CO2浓度以及大气CO2的δ13C均存在一定差异,导致了林冠各层叶片的短期水分利用效率的变化.林冠上层叶片通过提高水分利用效率适应环境.  相似文献   
4.
We determined the relationship between plant height and whole-plant relative growth rate (g g-1 day-1) for ten genotypes of Sporobolus kentrophyllus collected from an intensively grazed site on the Serengeti Plains, Tanzania. Plants were grown for 7 weeks in a greenhouse in Syracuse, N.Y., and harvested weekly. Plants that received simulated bovine urine showed a negative relationship between plant height and growth rate, suggesting a genetic tradeoff between competitive ability if ungrazed (height) and ability to recover from grazing (growth rate). There was no height-growth rate relationship under nitrogen addition rates similar to field mineralization rates. In addition, faster-growing, shorter plants tended to have relatively higher above-ground growth rates than slower-growing, taller plants. These results suggest that natural selection has maintained a gradient of morphologies within this species ranging from short, rapidly growing genotypes adapted to intense grazing conditions to tall, slow-growing, grazer-susceptible genotypes that are superior light competitors in absence of herbivory.  相似文献   
5.
Common bean (Phaseolus vulgaris L.) varies in growth habit from aggressive climbing types to bush beans. Growth habit is determined by a combination of factors including determinate versus indeterminate growth, total plant height, degree of branching and internode length. Together these factors make up climbing ability. The objective of this research was to determine the quantitative trait loci (QTL) controlling climbing ability in a F5:8 recombinant inbred line population derived from an inter-gene pool cross of an aggressive indeterminate climbing bean with type IV growth habit (G2333) by an indeterminate bush bean of type IIb growth habit (G19839). The population was planted in four randomized complete block design experiments across environments that varied in altitude (from 1,000 to 1,750 masl) and soil fertility (low versus high phosphorus). QTL were identified for plant height, internode length and number of branches per plant on a genetic map covering all common bean linkage groups with a total length of 1,175 cM. In addition a scale was developed to evaluate overall climbing ability and was also used to identify QTL. A total of 7 QTL were found for plant height, 9 for climbing ability, 6 for internode length and 1 for branch number. The largest number and most significant QTL were found on the lower half of linkage group B04 suggesting a major pleiotropic locus for growth habit traits at this location of the genome that is distinct from previously characterized genes which control plant morphology of the crop.  相似文献   
6.
Gray Flycatchers (Empidonax wrightii) breed in a variety of habitats in the arid and semi‐arid regions of the western United States, but little is known about their breeding biology, especially in the northern portion of their range where they nest in ponderosa pine (Pinus ponderosa) forests. From May to July 2014 and 2015, we conducted surveys for singing male Gray Flycatchers along the eastern slope of the Cascade Range in Washington, U.S.A, monitored flycatcher nests, and quantified nest‐site vegetation. We used a logistic‐exposure model fit within a Bayesian framework to model the daily survival probability of flycatcher nests. During the 2 yr of our study, we monitored 141 nests, with 93% in ponderosa pines. Mean clutch size was 3.6 eggs and the mean number of young fledged per nest was 3.2. Predation accounted for 90% of failed nests. We found a positive association between daily nest survival and both nest height and distance of nest substrates from the nearest tree. Flycatchers that locate their nests higher above the ground and further from adjacent trees may be choosing the safest alternative because higher nests may be less exposed to terrestrial predators and nests in trees that are farther from other trees may be less exposed to arboreal predators such as jays (Corvidae) that may forage in patches with connected canopies. Nests in trees farther from other trees may also allow earlier detection of approaching predators and thus aid in nest defense.  相似文献   
7.
For pollination studies of forest species it is sometimes only possible to work on those flowers nearest to the ground. We test whether using low flowers introduces bias, by measuring height effects on bird visitation and fruit set in one mistletoe species pollinated by bellbirds in New Zealand. At this site, previous studies have shown fruit set near the ground to be pollen limited. We measured fruit set on 32 mistletoes at different heights in 11 host trees. Mistletoe fruit set varied significantly among host trees but did not vary with height. Although bellbirds generally forage preferentially in the upper part of the forest, mistletoe flowers appear to be attractive enough to ensure adequate visitation and fruit set at all heights.  相似文献   
8.
When we calculate mortality along a gradient such as size, dividing into size classes and calculating rates for every class often involves a trade-off: fine class intervals produce fluctuating rates along the gradient, whereas broad ones may miss some trends within an interval. The same trade-off occurs when we want to illustrate size distribution by a histogram. This paper introduces nonparametric methods, published in a statistical journal, into forest ecology, in which the fine-class strategy is used in an extreme way: (1) a smoothly changing pattern is approximated by a fine step function, (2) the goodness-of-fit to the data and the smoothness along the gradient are formulated as a weighting sum within a Bayesian framework, (3) the Akaike Bayesian Information Criterion (ABIC) selects the weighting system that most appropriately balances the two demands, and (4) the values of the step function are optimized by the maximum likelihood method. The nonparametric estimates enable us to represent various patterns visually and, unlike parametric modeling, calculations do not demand the determination of a functional form. Mortality and size distribution analyses were conducted on 12-year forest tree monitoring data from a 4 ha permanent plot in an old-growth warm–temperate evergreen broad-leaved forest in Japan. From trees of 11 evergreen species with a diameter at breast height (DBH) greater than 5 cm, we found three types of trend with increasing DBH: decreasing, ladle-shaped and constant mortality. These patterns reflect variations in life history particular to each species.  相似文献   
9.
An objective, quantifiable index of structural biodiversity that could be rapidly obtained with reduced or no field effort is essential for the use of structure as universal ecological indicator for ecosystem management. Active remote sensing provides a rapid assessment tool to potentially guide land managers in highly dynamic and spatially complex landscapes. These landscapes are often dependent on frequent disturbance regimes and characterized by high endemism.We propose a modified Shannon–Wiener Index and modified Evenness Index as stand structural complexity indices for surrogates of ecosystem health. These structural indices are validated at Tall Timbers Research Station the site of one of the longest running fire ecology studies in southeastern U.S. This site is dominated by highly dynamic pine-grassland woodlands maintained with frequent fire. Once the dominant ecosystem in the Southeast, this woodland complex has been cleared for agriculture or converted to other cover types, and depends on a frequent (1- to 3-year fire return interval) low- to moderate-intensity fire regime to prevent succession to mixed hardwood forests and maintain understory species diversity. Structural evaluation of the impact of multiple disturbance regimes included height profiles and derived metrics for five different fire interval treatments; 1-year, 2-year, 3-year, mixed fire frequency (a combination of 2- and 4-year fire returns), and fire exclusion. The 3-dimensional spatial arrangement of structural elements was used to assess hardwood encroachment and changes in structural complexity. In agreement with other research, 3-year fire return interval was considered to be the best fire interval treatment for maintaining the pine-grassland woodlands, because canopy cover and vertical diversity indices were shown to be statistically higher in fire excluded and less frequently burned plots than in 1- and 2-year fire interval treatments. We developed a LiDAR-derived structural diversity index, LHDI, and propose that an ecosystem-specific threshold target for management intervention can be developed, based on significant shifts in structure and composition using this new index.Structural diversity indices can be valuable surrogates of ecosystem biodiversity, and ecosystem-specific target values can be developed as objective quantifiable goals for conservation and ecosystem integrity, particularly in remote areas.  相似文献   
10.
Abstract. Considerable losses and degradation of heathlands (in moorlands and lowlands) have been reported across Europe, with Calluna vulgaris (heather) being replaced by other species, often grasses. Increasing atmospheric nitrogen deposition and overgrazing have been suggested as the driving factors behind this change. This possibility was investigated in a study of the interacting effects of nutrient inputs and grazing on heather and three grass species (Nardus stricta, Deschampsia cespitosa and D. flexuosa) in the field, on a moorland in northeastern Scotland. In addition, the interacting effects of increasing nutrients and Calluna canopy height on N. stricta and D. cespitosa were studied using turves in an outdoor experimental area. In the field, fencing had a larger effect than fertilizer on the growth of all species, except for N. stricta, the species most unpalatable to herbivores. Fencing led to an increase in the height of the Calluna canopy, which may reduce light availability for the grasses. In the turf experiment, the height of the Calluna canopy affected the diameter of the grass tussocks and percentage of green matter (i.e. live leaf material), with plants under the more closed Calluna canopies being smaller. This study suggests that the slow‐growing, evergreen Calluna is a more effective competitor than the faster growing grasses when it has a tall, intact canopy, even at increased levels of nutrient supply. However, overgrazing promotes gap formation in the Calluna canopy, providing an opportunity for grasses to take advantage of increased nutrients. Thus the conservation of heather moorlands requires an understanding of the grazing level which allows Calluna to maintain sufficient canopy structure to outcompete grasses for light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号