首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3343篇
  免费   397篇
  国内免费   234篇
  2023年   103篇
  2022年   101篇
  2021年   139篇
  2020年   176篇
  2019年   169篇
  2018年   131篇
  2017年   118篇
  2016年   114篇
  2015年   114篇
  2014年   146篇
  2013年   259篇
  2012年   112篇
  2011年   151篇
  2010年   98篇
  2009年   158篇
  2008年   170篇
  2007年   162篇
  2006年   176篇
  2005年   194篇
  2004年   185篇
  2003年   146篇
  2002年   116篇
  2001年   68篇
  2000年   59篇
  1999年   36篇
  1998年   35篇
  1997年   26篇
  1996年   30篇
  1995年   35篇
  1994年   36篇
  1993年   25篇
  1992年   22篇
  1991年   19篇
  1990年   28篇
  1989年   14篇
  1988年   11篇
  1987年   15篇
  1986年   17篇
  1985年   31篇
  1984年   27篇
  1983年   16篇
  1982年   22篇
  1981年   24篇
  1980年   22篇
  1979年   16篇
  1978年   29篇
  1977年   26篇
  1976年   12篇
  1975年   13篇
  1974年   9篇
排序方式: 共有3974条查询结果,搜索用时 468 毫秒
1.
The alpha/beta‐hydrolases are a family of acid‐base‐nucleophile catalytic triad enzymes with a common fold, but using a wide variety of substrates, having different pH optima, catalyzing unique catalytic reactions and often showing improved chemical and thermo stability. The ABH enzymes are prime targets for protein engineering. Here, we have classified active sites from 51 representative members of 40 structural ABH fold families into eight distinct conserved geometries. We demonstrate the occurrence of a common structural motif, the catalytic acid zone, at the catalytic triad acid turn. We show that binding of an external ligand does not change the structure of the catalytic acid zone and both the ligand‐free and ligand‐bound forms of the protein belong to the same catalytic acid zone subgroup. We also show that the catalytic acid zone coordinates the position of the catalytic histidine loop directly above its plane, and consequently, fixes the catalytic histidine in a proper position near the catalytic acid. Finally, we demonstrate that the catalytic acid zone plays a key role in multi‐subunit complex formation in ABH enzymes, and is involved in interactions with other proteins. As a result, we speculate that each of the catalytic triad residues has its own supporting structural scaffold, similar to the catalytic acid zone, described above, which together form the extended catalytic triad motif. Each scaffold coordinates the function of its respective catalytic residue, and can even compensate for the loss of protein function, if the catalytic amino acid is mutated.  相似文献   
2.
3.
Cathepsin D (Cath D) is overexpressed and secreted in a number of solid tumors and involved in the progress of tumor invasion, proliferation, metastasis, and apoptosis. Inhibition of Cath D is regarded as an attractive pathway for the development of novel anticancer drugs. Our previous studies revealed that tasiamide B, a cyanobacterial peptide that contained a statine‐like unit, exhibited good inhibition against Cath D and other aspartic proteases. Using this natural product as prototype, we designed and synthesized three new analogs, which bear isophthalic acid fragment at the N‐terminus and isobutyl amine ( 1 ), cyclopropyl amine ( 2 ), or 3‐methoxybenzyl amine ( 3 ) moiety at the C‐terminus. Enzymatic assays revealed that all these three compounds showed moderate‐to‐good inhibition against Cath D, with IC50s of 15, 884, and 353 nM, respectively. Notably, compound 1 showed extreme selectivity for Cath D with 576‐fold over Cath E and 554‐fold over BACE1, which could be a valuable template for the design of highly potent and selective Cath D inhibitors. Additionally, compound 1 showed moderated activity against HeLa cell lines with IC50 of 41.8 μM. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
4.
5.
  1. Download : Download high-res image (123KB)
  2. Download : Download full-size image
  相似文献   
6.
In many tropical regions, slash‐and‐burn agriculture is considered as a driver of deforestation; the forest is converted into agricultural land by cutting and burning the trees. However, the fields are abandoned after few years because of yield decrease and weed invasion. Consequently, new surfaces are regularly cleared from the primary forest. We propose a reclamation strategy for abandoned fields allowing and sustaining re‐cultivation. In the dry region of south‐western Madagascar, we tested, according to a split‐plot design, an alternative selective slash‐and‐burn cultivation technique coupled with compost amendment on 30–year‐old abandoned fields. Corn plants (Zea mays L.) were grown on four different types of soil amendments: no amendment (control), compost, ashes (as in traditional slash‐and‐burn cultivation), and compost + ashes additions. Furthermore, two tree cover treatments were applied: 0% tree cover (as in traditional slash‐and‐burn cultivation) and 50% tree cover (selective slash‐and‐burn). Both corn growth and soil fertility parameters were monitored during the growing season 2015 up to final harvest. The amendment compost + ashes strongly increased corn yield, which was multiplied by 4–5 in comparison with ashes or compost alone, reaching 1.5 t/ha compared to 0.25 and 0.35 t/ha for ashes and compost, respectively. On control plots, yield was negligible as expected on these degraded soils. Structural equation modeling evidenced that compost and ashes were complementary fertilizing pathways promoting soil fertility through positive effects on soil moisture, pH, organic matter, and microbial activity. Concerning the tree cover treatment, yield was reduced on shaded plots (50% tree cover) compared to sunny plots (0% tree cover) for all soil amendments, except ashes. To conclude, our results provide empirical evidence on the potential of recultivating tropical degraded soils with compost and ashes. This would help mitigating deforestation of the primary forest by increasing lifespan of agricultural lands.  相似文献   
7.
《Current biology : CB》2020,30(16):3154-3166.e4
  1. Download : Download high-res image (207KB)
  2. Download : Download full-size image
  相似文献   
8.
Several factors describe the broad pattern of diversity in plant species distribution. We explore these determinants of species richness in Western Himalayas using high‐resolution species data available for the area to energy, water, physiography and anthropogenic disturbance. The floral data involves 1279 species from 1178 spatial locations and 738 sample plots of a national database. We evaluated their correlation with 8‐environmental variables, selected on the basis of correlation coefficients and principal component loadings, using both linear (structural equation model) and nonlinear (generalised additive model) techniques. There were 645 genera and 176 families including 815 herbs, 213 shrubs, 190 trees, and 61 lianas. The nonlinear model explained the maximum deviance of 67.4% and showed the dominant contribution of climate on species richness with a 59% share. Energy variables (potential evapotranspiration and temperature seasonality) explained the deviance better than did water variables (aridity index and precipitation of the driest quarter). Temperature seasonality had the maximum impact on the species richness. The structural equation model confirmed the results of the nonlinear model but less efficiently. The mutual influences of the climatic variables were found to affect the predictions of the model significantly. To our knowledge, the 67.4% deviance found in the species richness pattern is one of the highest values reported in mountain studies. Broadly, climate described by water–energy dynamics provides the best explanation for the species richness pattern. Both modeling approaches supported the same conclusion that energy is the best predictor of species richness. The dry and cold conditions of the region account for the dominant contribution of energy on species richness.  相似文献   
9.
10.
  1. Download : Download high-res image (261KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号