首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8745篇
  免费   806篇
  国内免费   767篇
  2023年   147篇
  2022年   152篇
  2021年   240篇
  2020年   279篇
  2019年   331篇
  2018年   273篇
  2017年   314篇
  2016年   320篇
  2015年   323篇
  2014年   361篇
  2013年   514篇
  2012年   324篇
  2011年   349篇
  2010年   323篇
  2009年   438篇
  2008年   412篇
  2007年   501篇
  2006年   383篇
  2005年   363篇
  2004年   299篇
  2003年   278篇
  2002年   264篇
  2001年   258篇
  2000年   261篇
  1999年   232篇
  1998年   197篇
  1997年   198篇
  1996年   179篇
  1995年   201篇
  1994年   157篇
  1993年   157篇
  1992年   165篇
  1991年   148篇
  1990年   113篇
  1989年   109篇
  1988年   80篇
  1987年   94篇
  1986年   76篇
  1985年   79篇
  1984年   60篇
  1983年   36篇
  1982年   63篇
  1981年   48篇
  1980年   54篇
  1979年   42篇
  1978年   32篇
  1977年   18篇
  1976年   25篇
  1975年   15篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Ribosomal (r)RNA and rDNA have been golden molecular markers in microbial ecology. However, it remains poorly understood how ribotype copy number (CN)‐based characteristics are linked with diversity, abundance, and activity of protist populations and communities observed at organismal levels. Here, we applied a single‐cell approach to quantify ribotype CNs in two ciliate species reared at different temperatures. We found that in actively growing cells, the per‐cell rDNA and rRNA CNs scaled with cell volume (CV) to 0.44 and 0.58 powers, respectively. The modeled rDNA and rRNA concentrations thus appear to be much higher in smaller than in larger cells. The observed rRNA:rDNA ratio scaled with CV0.14. The maximum growth rate could be well predicted by a combination of per‐cell ribotype CN and temperature. Our empirical data and modeling on single‐cell ribotype scaling are in agreement with both the metabolic theory of ecology and the growth rate hypothesis, providing a quantitative framework for linking cellular rDNA and rRNA CNs with body size, growth (activity), and biomass stoichiometry. This study also demonstrates that the expression rate of rRNA genes is constrained by cell size, and favors biomass rather than abundance‐based interpretation of quantitative ribotype data in population and community ecology of protists.  相似文献   
2.
松嫩平原苏打盐渍化旱田土壤表观电导率空间变异   总被引:1,自引:0,他引:1  
在松嫩平原西部吉林省大安市乐胜乡,于2013年4月20日选择盐碱程度不均一的典型盐渍化旱田地块,面积为4.8 hm~2作为研究样地。利用EM38大地电导率仪测定结合田间定点采样,并通过经典统计和地统计相结合的方法研究了盐渍化旱田土壤表观电导率空间变异特征,分析了土壤表观电导率与土壤盐碱指标之间的关系。结果表明,盐渍化旱田土壤水平方向表观电导率(EC_h)经对数转换后具有强空间自相关,其变异特征主要是与地形地貌和水文状况等结构性因素有关。垂直方向表观电导率(EC_v)经对数转换后具有中等空间自相关性,其变异特征受结构性因素和随机因素共同作用。EC_h和EC_v半方差模拟的最优模型分别为球状模型和指数模型。Pearson分析表明土壤表观电导率(EC_h和EC_v)与土壤盐碱指标EC_(1∶5)、pH_(1∶5)、SAR、SC、Na~+、CO_3~(2-)、HCO_3~-呈正相关关系(P0.05),EC_h与土壤盐碱指标相关系数均大于EC_v。在实际应用中可以用EC_h来指示土壤的盐碱程度。回归分析表明土壤表观电导率(EC_h和EC_v)与土壤盐碱指标呈线性相关,且EC_h回归模型的决定系数均大于EC_v回归模型的决定系数,可用水平方向土壤表观电导率(EC_h)来计算土壤盐碱指标,进行土壤盐渍化的快速评估。  相似文献   
3.
4.
The environmental conditions to which juvenile barnacle geese (Branta leucopsis) were exposed during growth were found to affect their body size at fledging as well as their final adult body size. Small juveniles showed compensatory growth from the time of fledging up to one year of age, but this did not fully compensate the differences in body size that were established before fledging. The variation in protein content in plants eaten during growth could probably explain the observed body size differences, sometimes of more than 10%, between different categories of adult geese. Our results imply that one cannot infer selection on morphological characters from differences between samples of adult birds from different localities or from different cohorts within a population, without first showing that environmental conditions during growth do not affect the development of the characters under study.  相似文献   
5.
In the Chihuahuan Desert of the southwestern United States we monitored responses of both winter and summer annual plant communities to natural environmental variation and to experimental removal of seed-eating rodents and ants for 13 years. Analyses of data on population densities of the species by principal component analysis (PCA) followed by repeated measures analysis of variance (rmANOVA) on PCA scores showed that: (1) composition of both winter and summer annual communities varied substantially from year to year, presumably in response to interannual climatic variation, and (2) community composition of winter annuals was also significantly affected by the experimental manipulations of seed-eating animals, but the composition of the summer annual community showed no significant response to these experimental treatments. Canonical discriminant analysis (CDA) was then applied to the data for winter annuals to more clearly identify the responses to the different classes of experimental manipulations. This analysis showed that removing rodents or ants or both taxa caused distinctive changes in species composition. There was a tendency for large-seeded species to increase on rodent removal plots and to decrease on ant removal plots, and for small-seeded species to change in the opposite direction. In the winter annual community there was a significant time x treatment interaction: certain combinations of species that responded differently to removal of granivores also showed opposite fluctuations in response to long-term climatic variation. The large year-to-year variation in the summer annual community was closely and positively correlated across all experimental treatments. The use of multivariate analysis in conjunction with long-term monitoring and experimental manipulation shows how biotic interactions interact with variation in abiotic conditions to affect community dynamics.  相似文献   
6.
  • Intraspecific trait variation (ITV; i.e. variability in mean and/or distribution of plant attribute values within species) can occur in response to multiple drivers. Environmental change and land‐use legacies could directly alter trait values within species but could also affect them indirectly through changes in vegetation cover. Increasing variability in environmental conditions could lead to more ITV, but responses might differ among species. Disentangling these drivers on ITV is necessary to accurately predict plant community responses to global change.
  • We planted herb communities into forest soils with and without a recent history of agriculture. Soils were collected across temperate European regions, while the 15 selected herb species had different colonizing abilities and affinities to forest habitat. These mesocosms (384) were exposed to two‐level full‐factorial treatments of warming, nitrogen addition and illumination. We measured plant height and specific leaf area (SLA).
  • For the majority of species, mean plant height increased as vegetation cover increased in response to light addition, warming and agricultural legacy. The coefficient of variation (CV) for height was larger in fast‐colonizing species. Mean SLA for vernal species increased with warming, while light addition generally decreased mean SLA for shade‐tolerant species. Interactions between treatments were not important predictors.
  • Environmental change treatments influenced ITV, either via increasing vegetation cover or by affecting trait values directly. Species’ ITV was individualistic, i.e. species responded to different single resource and condition manipulations that benefited their growth in the short term. These individual responses could be important for altered community organization after a prolonged period.
  相似文献   
7.
8.
9.
Indicators of landscape condition should be selected based on their sensitivity to environmental changes and their capacity to provide early warning detection of those changes. We assessed the performance of a suite of spatial-pattern metrics selected to quantify the condition of the ridge-slough landscape in the Everglades (South Florida, USA). Spatial pattern metrics (n = 14) that describe landscape composition, geometry and hydrologic connectivity were enumerated from vegetation maps of twenty-five 2 × 2 km primary sampling units (PSUs) that span a gradient of hydrologic and ecological condition across the greater Everglades ecosystem. Metrics were assessed in comparison with field measurements from each PSU of landscape condition obtained from regional surveys of soil elevation, which have previously been shown to capture dramatic differences between conserved and degraded locations. Elevation-based measures of landscape condition included soil elevation bi-modality (BISE), a binary measure of landscape condition, and also the standard deviation of soil elevation (SDSE), a continuous measure of condition. Metric performance was assessed based on the strength (sensitivity) and shape (leading vs. lagging) of the relationship between spatial pattern metrics and these elevation-based measures. We observed significant logistic regression slopes with BISE for only 4 metrics (slough width, ridge density, directional connectivity index – DCI, and least flow cost – LFC). More significant relationships (n = 8 metrics) were observed with SDSE, with the strongest associations for slough density, mean ridge width, and the average length of straight flow, as well as for a suite of hydrologic connectivity metrics (DCI, LFC and landscape discharge competence – LDC). Leading vs. lagging performance, inferred from the curvature of the association obtained from the exponent of fitted power functions, suggest that only DCI was a leading metric of the loss of soil elevation variation; most metrics were indeterminate, though some were clearly lagging. Our findings support the contention that soil elevation changes from altered peat accretion dynamics precede changes in landscape pattern, and offer insights that will enable efficient monitoring of the ridge-slough landscape as part of the ongoing Everglades restoration effort.  相似文献   
10.
Urbanization and its physical and chemical effects on aquatic environments influence invertebrate communities negatively. Yet, it is not clear how urbanization affects inter-annual variation of invertebrate assemblages in streams. We 1) evaluated urbanization effects on the ecological conditions (biotic and abiotic) of streams in Manaus and 2) analyzed invertebrate community variation over time (between 2003 and 2010). Data on abiotic variables and invertebrates from 2003 were obtained from a previous study. In 2010 we sampled abiotic variables and invertebrate communities in the same low-order urban streams sampled in 2003 (n = 40). We recorded high values of total nitrogen, total phosphorous, deforestation, total impervious area (TIA), water temperature, pH, and electrical conductivity in the most urbanized streams, as compared to the least-impacted ones. In contrast, the least-impacted streams had high dissolved oxygen concentrations. Water quality was poorer in 2010 than in 2003: oxygen concentration was lower and total nitrogen, total phosphorous, deforestation, and TIA significantly higher in 2010. We recorded higher inter-annual variation of abiotic variables in the most-impacted streams as compared to the least-impacted streams. EPT (%, Ephemeroptera, Plecoptera, and Trichoptera) and richness metrics decreased with urbanization. On the other hand, % OP (percent of Oligochaeta and Psychodidae) increased with urbanization. Observed and EPT richness and% OP increased between 2003 and 2010. On the other hand, rarefied richness decreased between years. Increases of observed and EPT richness between 2003 and 2010 were related to low inter-annual variability in streams conditions; however, differences of% OP and rarefied richness were not related to inter-annual variability in environmental conditions. The degree of urbanization did not explain the magnitude of the within-stream difference of invertebrate communities between 2003 and 2010. The increased effects of urbanization represented by the abiotic variables sampled and the reduction of invertebrate richness and increased dominance of tolerant taxa indicate that public policy is not enough to protect or mitigate human impacts on the urban water systems under study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号