首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4383篇
  免费   454篇
  国内免费   222篇
  2024年   4篇
  2023年   109篇
  2022年   56篇
  2021年   254篇
  2020年   300篇
  2019年   367篇
  2018年   338篇
  2017年   326篇
  2016年   330篇
  2015年   346篇
  2014年   403篇
  2013年   847篇
  2012年   273篇
  2011年   203篇
  2010年   110篇
  2009年   103篇
  2008年   79篇
  2007年   69篇
  2006年   59篇
  2005年   65篇
  2004年   55篇
  2003年   48篇
  2002年   41篇
  2001年   39篇
  2000年   27篇
  1999年   32篇
  1998年   13篇
  1997年   22篇
  1996年   13篇
  1995年   12篇
  1994年   5篇
  1993年   11篇
  1992年   9篇
  1991年   15篇
  1990年   7篇
  1989年   7篇
  1988年   7篇
  1987年   6篇
  1986年   5篇
  1985年   15篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有5059条查询结果,搜索用时 15 毫秒
1.
《Molecular cell》2020,77(4):748-760.e9
  1. Download : Download high-res image (218KB)
  2. Download : Download full-size image
  相似文献   
2.
3.
Glioma is a common primary brain tumor with high mortality rate and poor prognosis. Long noncoding RNA maternally expressed gene 3 (MEG3) is a tumor suppressor in diverse cancer types. However, the role of MEG3 in glioma remains unclear. We aimed to explore the effects of MEG3 on U251 cells as well as the underlying mechanisms. U251 cells were stably transfected with different recombined plasmids to overexpress or silence MEG3. Effects of aberrantly expressed MEG3 on cell viability, migration, apoptosis, expressions of apoptosis-associated and autophagy-associated proteins, and phosphorylated levels of key kinases in the PI3K/AKT/mTOR pathway were all evaluated. Then, messenger RNA (mRNA) and protein expression of Sirt7 in cells abnormally expressing MEG3 were estimated. In addition, effects of abnormally expressed MEG3 and Sirt7 on U251 cells were determined to reveal the underlying mechanism of MEG3-associated modulation. Cell viability and migration were significantly reduced by MEG3 overexpression whereas cell apoptosis as well as Bax and cleaved caspase-3/-9 proteins were obviously induced. Beclin-1 and LC3-II/LC3-I were upregulated and p62 was downregulated in MEG3 overexpressed cells. In addition, the autophagy pharmacological inhibitor (3-methyladenine, 3-MA) affected the effect of MEG3 overexpression on cell proliferation. Furthermore, the phosphorylated levels of key kinases in the PI3K/AKT/mTOR pathway were all reduced by MEG3 overexpression. Sirt7 was positively regulated by MEG3 expression, and effects of MEG3 overexpression on U251 cells were ameliorated by Sirt7 silence. MEG3 suppressed cell proliferation and migration but promoted autophagy in U251 cells through positively regulating Sirt7, involving in the inhibition of the PI3K/AKT/mTOR pathway.  相似文献   
4.
Selective macroautophagy/autophagy plays a pivotal role in the processing of foreign pathogens and cellular components to maintain homeostasis in human cells. To date, numerous studies have demonstrated the uptake of nanoparticles by cells, but their intracellular processing through selective autophagy remains unclear. Here we show that carbon-based nanodiamonds (NDs) coated with ubiquitin (Ub) bind to autophagy receptors (SQSTM1 [sequestosome 1], OPTN [optineurin], and CALCOCO2/NDP52 [calcium binding and coiled-coil domain 2]) and are then linked to MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) for entry into the selective autophagy pathway. NDs are ultimately delivered to lysosomes. Ectopically expressed SQSTM1-green fluorescence protein (GFP) could bind to the Ub-coated NDs. By contrast, the Ub-associated domain mutant of SQSTM1 (ΔUBA)-GFP did not bind to the Ub-coated NDs. Chloroquine, an autophagy inhibitor, prevented the ND-containing autophagosomes from fusing with lysosomes. Furthermore, autophagy receptors OPTN and CALCOCO2/NDP52, involved in the processing of bacteria, were found to be involved in the selective autophagy of NDs. However, ND particles located in the lysosomes of cells did not induce mitotic blockage, senescence, or cell death. Single ND clusters in the lysosomes of cells were observed in the xenografted human lung tumors of nude mice. This study demonstrated for the first time that Ub-coated nanoparticles bind to autophagy receptors for entry into the selective autophagy pathway, facilitating their delivery to lysosomes.  相似文献   
5.
《Developmental cell》2023,58(10):866-884.e8
  1. Download : Download high-res image (206KB)
  2. Download : Download full-size image
  相似文献   
6.
Hexokinase is the first enzyme in the glycolytic pathway catalyzing the reaction in which glucose is phosphorylated into glucose-6-phosphate. Mammals possess 4 isoforms of hexokinase; HK2 (hexokinase 2) is the predominant form in insulin-sensitive tissues such as adipocytes, as well as skeletal and cardiac muscle. In addition to its function in glucose metabolism, HK2 is associated with cardiomyocyte protection against mitochondrial-mediated apoptotic cell death; whether or not HK2 played a role in cardioprotective autophagy was yet to be discovered. However, in a recent study highlighted by a punctum in this issue of Autophagy, Roberts et al. addressed this possibility, uncovering a direct link between HK2, TORC1, and autophagy regulation.  相似文献   
7.
We report the discovery of highly potent and selective non-steroidal glucocorticoid receptor modulators with PK properties suitable for inhalation. A high throughput screen of the AstraZeneca compound collection identified sulfonamide 3 as a potent non-steroidal glucocorticoid receptor ligand. Further optimization of this lead generated indazoles 30 and 48 that were progressed to characterization in in vivo models. X-ray crystallography was used to gain further insight into the binding mode of selected ligands.  相似文献   
8.
Selective proteolysis is one of the mechanisms for the maintenance of cell homeostasis via rapid degradation of defective polypeptides and certain short-lived regulatory proteins. In prokaryotic cells, high-molecular-mass oligomeric ATP-dependent proteases are responsible for selective protein degradation. In eukaryotes, most polypeptides are attacked by the multicatalytic 26S proteasome, and the degradation of the majority of substrates involves their preliminary modification with the protein ubiquitin. The proteins undergoing the selective proteolysis often contain specific degradation signals necessary for their recognition by the corresponding proteases. This article is dedicated to the 25th Anniversary of the journal Bioorganicheskaya Khimiya  相似文献   
9.
《Autophagy》2013,9(6):816-818
Autophagy, a specialized lysosomal degradation pathway, has proven to be a potent cell-autonomous defense mechanism against a range of intracellular microbes. In addition, autophagy emerged recently as a critical regulator of innate and adaptive immune responses. Links between autophagy and innate immunity are being progressively unveiled. For instance, several TLR (Toll-Like Receptor) agonists upregulate autophagy flux in immune cell types such as DC (dendritic cells) or macrophages. Conversely, and perhaps surprisingly, is the observation that TLR7-mediated responses might depend on autophagy in plasmacytoid DC, thus suggesting a more complex link between TLR-dependent responses and autophagy. Recently, the demonstration that NOD2 increases autophagy suggests that innate immune responses initiated via a broad range of pathogen recognition receptors can regulate autophagy. In addition to its involvement in innate immune responses, autophagy regulates adaptive immune responses via both MHC class I and class II molecules depending on the cellular context and the nature of the antigen.  相似文献   
10.
Neopomacentrus filamentosus, a common damselfish on the Indo–Australian archipelago, undergoes significant shifts in size and mitochondrial genetic structure upon larval settlement and metamorphosis to juvenile stages. We characterized five polymorphic microsatellite loci in order to study temporal genetic shifts within a single generation of N. filamentosus sampled first as larval settlers then again as demersal juvenile recruits. All loci were extremely polymorphic and exhibited high levels of heterozygosity. While all loci from the larval samples conformed to Hardy – Weinberg expectations, significant heterozygote deficiencies were seen in two loci in the juvenile samples, likely due to extreme size‐selective mortality imposed post‐settlement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号