首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4422篇
  免费   528篇
  国内免费   510篇
  2024年   5篇
  2023年   88篇
  2022年   93篇
  2021年   144篇
  2020年   156篇
  2019年   157篇
  2018年   177篇
  2017年   172篇
  2016年   167篇
  2015年   179篇
  2014年   181篇
  2013年   320篇
  2012年   146篇
  2011年   195篇
  2010年   154篇
  2009年   227篇
  2008年   229篇
  2007年   259篇
  2006年   237篇
  2005年   207篇
  2004年   177篇
  2003年   200篇
  2002年   164篇
  2001年   129篇
  2000年   129篇
  1999年   129篇
  1998年   114篇
  1997年   105篇
  1996年   99篇
  1995年   89篇
  1994年   82篇
  1993年   65篇
  1992年   58篇
  1991年   56篇
  1990年   52篇
  1989年   38篇
  1988年   33篇
  1987年   31篇
  1986年   23篇
  1985年   41篇
  1984年   42篇
  1983年   24篇
  1982年   30篇
  1981年   16篇
  1980年   10篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1975年   2篇
排序方式: 共有5460条查询结果,搜索用时 125 毫秒
1.
Trees can adjust xylem anatomical structure related with potential hydraulic functions to cope with climate variability. We therefore need a better understanding of how climate variability constrains wood anatomy and tree radial growth. Pinus tabuliformis dominates natural forests and plantations over the western Qinling Mountains, which is one of the ecologically vulnerable areas in China. Here, we investigated the response of P. tabuliformis tree-ring anatomical structure to climate variability by applying wood anatomy analysis, and evaluated the influences of anatomical traits on potential hydraulic functions and the climate significance of intra-annual density fluctuations (IADFs). We found that with the increasing temperature from spring to summer, the negative effect of temperature on the formation and enlargement of earlywood and transition-wood tracheids was gradually enhanced. However, spring precipitation not only had a direct and positive influence on the formation of earlywood, but also had a delaying impact on the transition-wood cell enlargement. Besides, the smaller earlywood tracheid size of P. tabuliformis could be a substantially characteristic reflecting spring drought. The contribution of lumen diameter on conduit wall reinforcement was dominated in earlywood, while the contribution of cell wall thickness was greater than that of lumen diameter in latewood. The different contributions of anatomical traits on conduit wall reinforcement would further affect the response of potential hydraulic function to climate. IADFs of P. tabuliformis could be a potential indicator to reflect the abnormal summer precipitation events in the western Qinling Mountains. IADFs with strong and weak intensity indicated years with high and low rates of change in mid-summer precipitation, respectively. Future warmer and drier climate in the western Qinling Mountains will likely result in the production of smaller tracheids to ensure hydraulic safety, which means the stronger drought resistant of P. tabuliformis in the future. In this study, we linked the xylem anatomy and potential hydraulics functions with intra-seasonal climate variability in the context of climate warming and drying, and proposed some xylem anatomical indices reflecting potential drought events.  相似文献   
2.
The world we live in is a biosphere influenced by all organisms who inhabit it. It is also an ecology of genes, with some having rather startling effects. The premise put forth in this issue is cytochrome P450 is a significant player in the world around us. Life and the Earth itself would be visibly different and diminished without cytochrome P450s. The contributions to this issue range from evolution on the billion year scale to the colour of roses, from Darwin to Rachel Carson; all as seen through the lens of cytochrome P450.  相似文献   
3.
The distribution of regular secondary structures, viz. α-helices and β-strands, along the length of over 70 properties whose secondary structural details have been reported, has been analysed. The occurrence of these regular structures tends to be a maximum at the N- and C-termini. Our analysis suggests that both these free ends could possibly serve as nucleating centers for secondary structures and could play an important role in the folding of proteins.  相似文献   
4.
The 5? cap and 3? poly(A) tail of mRNA are known to synergistically stimulate translation initiation via the formation of the cap?eIF4E?eIF4G?PABP?poly(A) complex. Most mRNA sequences have an intrinsic propensity to fold into extensive intramolecular secondary structures that result in short end-to-end distances. The inherent compactness of mRNAs might stabilize the cap?eIF4E?eIF4G?PABP?poly(A) complex and enhance cap-poly(A) translational synergy. Here, we test this hypothesis by introducing intrinsically unstructured sequences into the 5? or 3? UTRs of model mRNAs. We found that the introduction of unstructured sequences into the 3? UTR, but not the 5? UTR, decreases mRNA translation in cell-free wheat germ and yeast extracts without affecting mRNA stability. The observed reduction in protein synthesis results from the diminished ability of the poly(A) tail to stimulate translation. These results suggest that base pair formation by the 3? UTR enhances the cap-poly(A) synergy in translation initiation.  相似文献   
5.
Size-related changes in hydraulic architecture, carbon allocation and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than ∼6-m-tall exhibited more branch damage, larger numbers of dead individuals, higher wood density, greater leaf mass per area, lower leaf area to sapwood area ratio (LA/SA), lower stomatal conductance and lower net CO2 assimilation than small trees. Stem-specific hydraulic conductivity decreased, while leaf-specific hydraulic conductivity remained nearly constant, with increasing tree size because of lower LA/SA in larger trees. Leaves were substantially more vulnerable to embolism than stems. Large trees had lower maximum leaf hydraulic conductance ( K leaf) than small trees and all tree sizes exhibited lower K leaf at midday than at dawn. These size-related adjustments in hydraulic architecture and carbon allocation apparently incurred a large physiological cost: large trees received a lower return in carbon gain from their investment in stem and leaf biomass compared with small trees. Additionally, large trees may experience more severe water deficits in dry years due to lower capacity for buffering the effects of hydraulic path-length and soil water deficits.  相似文献   
6.
1. The effects of a moderate addition of nutrients (twofold N and threefold P) were examined during a 2‐year period to determine the response to nutrient addition in a meiofaunal community inhabiting sandy patches in a Mediterranean stream. 2. The pattern of meiofaunal assemblages exhibits a high degree of intra‐ and interannual variability. This pattern alternates between periods of hydrological stability and disturbances, such as floods and droughts, which is a characteristic of Mediterranean systems. 3. A before–after–control–impact (BACI) design was used to determine the outcome of the addition by comparing an upstream non‐enriched reach with an enriched downstream reach. Analysis of the study data by means of a nonparametric permutational procedure (permanova ) showed that fertilisation had a significant effect. Density and biomass values increased in the most abundant meiofaunal groups, including microcrustaceans, oligochaetes and chironomids. Microcrustaceans were the dominant group in the permanent meiofauna. 4. We also examined differences in microcrustacean secondary production in both reaches. Ostracods and cyclopoid copepods increased their secondary production in the impacted reach as a result of the nutrient addition. 5. Our study demonstrated that moderate nutrient enrichment can affect the biomass and production of stream meiofauna, but it is still unclear whether this effect was because of autotrophic or heterotrophic pathways.  相似文献   
7.
8.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
9.
Cardiac glycoside transport was investigated on the organ and whole plant level. Uptake experiments were carried out with shoot and root cultures of Digitalis lanata. In both systems primary cardenolides, i.e., those with a terminal glucose in their oligosaccharide side chain, were taken up against their concentration gradient, whereas the glucose-free secondary cardenolides were not. Active uptake of primary cardenolides was further evidenced by KCN inhibition of uptake. Using plantlets grown in vitro the long-distance transport of primary cardenolides from the leaves to the roots was demonstrated. Cardenolides were also detected in etiolated leaves, induced on plants with green leaves, which are supposed to be unable to synthezise cardenolides de novo, providing further evidence for long-distance transport. Several primary cardenolides were detected in the honeydew excreted by aphids fed on Digitalis lanata leaves, indicating that the phloem is a transporting tissue for cardenolides. On the other hand, the xylem sap obtained by applying the pressure-chamber technique was cardenolide-free. It was concluded that in Digitalis primary cardenolides serve as both the transport and the storage form of cardenolides. After their synthesis they are either stored in the vacuoles of the source tissue or loaded into the sieve tubes, from which they are unloaded at other sites where they are trapped in the vacuoles of the respective sink tissue.  相似文献   
10.
A hypothesis is presented that the availability of water for export of nitrogenous products from legume nodules is a major factor limiting the efficiency of symbiotic nitrogen fixation. Water for export of solutes in the xylem probably depends largely on the import of water and reduced carbon in the phloeum, and one function of respiration may be to dispose of reduced carbon in order to increase the supply of water. A second hypothesis presented is that control of gas diffusion in soybean nodules is largely restricted to the cortex nearby the vascular bundles, thus making possible the linkage of solute balances in xylem and phloem with resistance to diffusion. These concepts are used in a re-examination of literature on manipulations of nodules and nodulated plants such as lowering of light levels, water stress, defoliation, stem girdling, and alteration of oxygen supply. The concept of translocation as a major factor limiting efficiency of symbiotic fixation is consistent with the failure of superior rhizobial isolates to improve N input significantly, and this limitation could also prevent exploitation of superior bacterial symbionts in the future  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号