首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   26篇
  国内免费   9篇
  2023年   4篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   17篇
  2018年   6篇
  2017年   12篇
  2016年   9篇
  2015年   4篇
  2014年   7篇
  2013年   17篇
  2012年   10篇
  2011年   6篇
  2010年   8篇
  2009年   8篇
  2008年   11篇
  2007年   13篇
  2006年   7篇
  2005年   6篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   7篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1991年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
排序方式: 共有215条查询结果,搜索用时 15 毫秒
1.
Forty seven vibracores and fifteen radiocarbon dates have beenobtained to outline the Holocene history of the North Inlet saltmarsh basin. Marsh deposits date from about 3500 years BP and havetransgressed over a Late Pleistocene beach-ridge terrain that waspartly eroded by Late Holocene tidal channel meandering. Marsh mudalso has prograded southward over shallow subtidal estuarine Macomamuds which date from about 4500 years BP and which are stillaccumulating in adjacent Winyah Bay. The southward migration of themarsh environment probably is due to the southward migration ofboth North Inlet and the mouth of Winyah Bay. The stratigraphy ofthe North Inlet basin offers no evidence for Late Holocene sea-level oscillations.Application of this model of marsh history to the study long-term ecosystem succession driven by slowly rising sea level isdiscussed.  相似文献   
2.
To thrive in a time of rapid sea‐level rise, tidal marshes will need to migrate upslope into adjacent uplands. Yet little is known about the mechanics of this process, especially in urbanized estuaries, where the adjacent upland is likely to be a mowed lawn rather than a wooded natural area. We studied marsh migration in a Long Island Sound salt marsh using detailed hydrologic, edaphic, and biotic sampling along marsh‐to‐upland transects in both wooded and lawn environments. We found that the overall pace of marsh development was largely unaffected by whether the upland being invaded was lawn or wooded, but the marsh‐edge plant communities that developed in these two environments were quite different, and some indicators (soil salinity, foraminifera) appeared to migrate more easily into lawns. In addition, we found that different aspects of marsh structure and function migrated at different rates: Wetland vegetation appeared to be a leading indicator of marsh migration, while soil characteristics such as redox potential and surface salinity developed later in the process. We defined a ‘hydrologic migration zone’, consisting of elevations that experience tidal inundation with frequencies ranging from 20% to 0.5% of high tides. This hydrologically defined zone – which extended to an elevation higher than the highest astronomical tide datum – captured the biotic and edaphic marsh‐upland ecotone. Tidal inundation at the upper border of this migration zone is highly variable over time and may be rising more rapidly than mean sea level. Our results indicate that land management practices at the upland periphery of tidal marshes can facilitate or impede ecosystem migration in response to rising sea level. These findings are applicable to large areas of tidal marsh along the U.S. Atlantic coast and in other urbanized coastal settings.  相似文献   
3.
Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer‐reviewed papers and conducted a meta‐analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH4+ (12%) and soil total N (210%), although it decreased soil NO3? (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N2O fluxes as well as hydrological NH4+ and NO2? fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta‐analysis. Overall, this meta‐analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro‐ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro‐ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized.  相似文献   
4.
Palynological studies on late Quaternary lake sediments from the region of the Amazon estuary, 100 km north-east of Belém, Pará State, Brazil, enable reconstruction of lowland Amazonian rain forest during the Late-glacial and Holocene periods. Late-glacial forests included populations of Podocarpus which suggests a distinct climatic cooling. Ilex was abundant in the early Holocene. Records of the mangrove taxon, Rhizophora, indicate rapid Atlantic sea-level rise in the beginning of the Holocene. High charcoal representation may reflect the first arrival of Amerindians in the Amazon coastal area, probably about 10 800 B.P.  相似文献   
5.
We show responses of coral reefs to increased amplitude of sea-level changes at the Mid-Pleistocene Climate Transition (MPT) based on lithostratigraphic, sedimentologic and calcareous nannofossil biostratigraphic investigations on Pleistocene reef-complex deposits (Ryukyu Group) on the Motobu Peninsula, Okinawa-jima, Central Ryukyus. Our data show that reef growth started in earliest Quaternary time (1.45-1.65 Ma) and that extensive reef formation dates back to ∼ 0.8 Ma. The mode of Quaternary sedimentation changed at ∼ 0.8 Ma in the study area. Before this time, thick siliciclastics and mixed carbonate-siliciclastics accumulated, which were followed by the deposition of bioclastic sediments (detrital limestone). No indications have been found of episodic subaerial exposures in these deposits and no calcareous nannofossil biozones are lacking. Since the detrital limestone includes biogenic components characterizing fore-reef to shelf environments, the coastal areas of the northern Motobu Peninsula mostly lay in fore-reef to shelf environments for > 0.6 million years (between ∼ 0.8 Ma and 1.45-1.65 Ma), when the sediments had not been subaerially exposed due to sea-level changes characterized by relatively small amplitudes. Coral limestone that formed in the latest Early to Middle Pleistocene between 0.4 Ma and 0.8 Ma extends over the study area, ranging in elevation from 0 to 70 m. This coral limestone grades upward into fore-reef to shelf carbonates (rhodolith, Cycloclypeus-Operculina, and detrital limestones) which is in turn overlain by coral limestone. This succession, combined with configuration of the lithofacies and paleobathymetry inferred from lithology and biogenic components, implies that the reef-complex deposits formed responding to sea-level changes with amplitude of > 60 m. Consequently, we suggest that the change in the mode of sedimentation results from increased amplitude of sea-level fluctuations at ∼ 0.8 Ma. This timing corresponds roughly to the timing of the Mid-Pleistocene Climate Transition (MPT).  相似文献   
6.
One of the expected effects of the global warming is changing coastal habitats by accelerating the rate of sea level rise. Coastal habitats support large number of marine and wetland species including shorebirds (plovers, sandpipers and allies). In this study, we investigate how coastal habitats may be impacted by sea level rise in the Farasan Islands, Kingdom of Saudi Arabia. We use Kentish plover Charadrius alexandrinus – a common coastal breeding shorebird – as an ecological model species to predict the influence of sea level rise. We found that any rise of sea level is likely to inundate 11% of Kentish plover nests. In addition, 5% of the coastal areas of Farasan Islands, which support 26% of Kentish plover nests, will be flooded, if sea level rises by one metre. Our results are constrained by the availability of data on both elevation and bird populations. Therefore, we recommend follow-up studies to model the impacts of sea level rise using different elevation scenarios, and the establishment of a monitoring programme for breeding shorebirds and seabirds in Farasan Islands to assess the impact of climate change on their populations.  相似文献   
7.
MIS3阶段以来黄骅北部地区潮坪地层中的微体生物群   总被引:2,自引:1,他引:1  
依据渤海湾湾顶南侧、古黄河三角洲河北省黄骅市北部地区13个钻孔岩芯材料微体古生物学研究,以及地球化学背景、沉积构造分析,本文确定了自相当海洋氧同位素MIS3阶段以来中潮坪、高潮坪、淡水注入的潮坪、潮汐通道、分支河道及边滩、牛轭湖、贫营养湖、滨海湿地与富营养湖、泛滥平原一泛滥盆地等不同沉积地层中的微体生物(有孔虫、海相与非海相介形类)分布特征.在MIS3阶段高潮坪一低地沉积之后,河口与相邻低地依然持续或断续出现海相微体生物,个别钻孔中其分布甚至延续到末次盛冰期低海面地层中,但是基本都是广盐种和低盐种.这一现象与沿海构造沉降背景下河口位置长期向陆迁移,微体生物随短暂的强潮及突发的风暴潮搬运、甚至与风、水和鸟的搬运作用有关;远离古河道地点则无此现象.这些海侵事件与全球海面变化和古海面高度无关.与渤海湾顶北侧天津沿海相比,黄骅北部未见天津沿海确定的全新世早期潮下带砂质沉积单元,以及相应的微体生物群,应与当时天津沿海构造沉降速率较高有关.在三角洲与潮坪研究中,微体古生物学发挥了重要作用,而不仅是记述内容之一.  相似文献   
8.
Delayed sleep phase disorder (DSPD) is assumed to be common amongst adolescents, with potentially severe consequences in terms of school attendance and daytime functioning. The most common treatment approaches for DSPD are based on the administration of bright light and/or exogenous melatonin with or without adjunct behavioural instructions. Much is generally known about the chronobiological effects of light and melatonin. However, placebo-controlled treatment studies for DSPD are scarce, in particular in adolescents and young adults, and no standardized guidelines exist regarding treatment. The aim of the present study was, therefore, to investigate the short- and long-term effects on sleep of a DSPD treatment protocol involving administration of timed bright light and melatonin alongside gradual advancement of rise time in adolescents and young adults with DSPD in a randomized controlled trial and an open label follow-up study. A total of 40 adolescents and young adults (age range 16–25 years) diagnosed with DSPD were recruited to participate in the study. The participants were randomized to receive treatment for two weeks in one of four treatment conditions: dim light and placebo capsules, bright light and placebo capsules, dim light and melatonin capsules or bright light and melatonin capsules. In a follow-up study, participants were re-randomized to either receive treatment with the combination of bright light and melatonin or no treatment in an open label trial for approximately three months. Light and capsules were administered alongside gradual advancement of rise times. The main end points were sleep as assessed by sleep diaries and actigraphy recordings and circadian phase as assessed by salivary dim light melatonin onset (DLMO). During the two-week intervention, the timing of sleep and DLMO was advanced in all treatment conditions as seen by about 1?h advance of bed time, 2?h advance of rise time and 2?h advance of DLMO in all four groups. Sleep duration was reduced with approximately 1?h. At three-month follow-up, only the treatment group had maintained an advanced sleep phase. Sleep duration had returned to baseline levels in both groups. In conclusion, gradual advancement of rise time produced a phase advance during the two-week intervention, irrespective of treatment condition. Termination of treatment caused relapse into delayed sleep times, whereas long-term treatment with bright light and melatonin (three months) allowed maintenance of the advanced sleep phase.  相似文献   
9.
10.
Chlorophyll a fluorescence rise (O-J-I-P transient) was in literature simulated using models describing reactions occurring solely in photosystem II (PSII) and plastoquinone (PQ) pool as well as using complex models which described, in addition to the above, also subsequent electron transport occurring beyond the PQ pool. However, there is no consistency in general approach how to formulate a kinetic model and how to describe particular reactions occurring even in PSII only. In this work, simple kinetic PSII models are considered always with the same electron carriers and same type of reactions but some reactions are approached in different ways: oxygen evolving complex is considered bound to PSII or “virtually” separated from PSII; exchange of doubly reduced secondary quinone PSII electron acceptor, QB, with PQ molecule from the PQ pool is described by one second order reaction or by two subsequent reactions; and all possible reactions or only those which follow in logical order are considered. By combining all these approaches, eight PSII models are formulated which are used for simulations of the chlorophyll a fluorescence transients. It is shown that the different approaches can lead to qualitatively different results. The approaches are compared with other models found elsewhere in the literature and therefore this work can help the readers to better understand the other models and their results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号