首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136953篇
  免费   9632篇
  国内免费   13754篇
  2023年   2306篇
  2022年   2499篇
  2021年   4266篇
  2020年   4039篇
  2019年   5040篇
  2018年   4076篇
  2017年   3685篇
  2016年   4053篇
  2015年   6025篇
  2014年   9951篇
  2013年   11265篇
  2012年   7732篇
  2011年   8732篇
  2010年   6301篇
  2009年   7087篇
  2008年   7154篇
  2007年   7733篇
  2006年   6091篇
  2005年   5331篇
  2004年   4360篇
  2003年   3789篇
  2002年   3323篇
  2001年   2713篇
  2000年   2412篇
  1999年   2215篇
  1998年   1949篇
  1997年   1699篇
  1996年   1612篇
  1995年   1639篇
  1994年   1531篇
  1993年   1464篇
  1992年   1347篇
  1991年   1250篇
  1990年   1061篇
  1989年   1013篇
  1988年   965篇
  1987年   783篇
  1986年   718篇
  1985年   1183篇
  1984年   1501篇
  1983年   895篇
  1982年   1264篇
  1981年   1207篇
  1980年   919篇
  1979年   832篇
  1978年   543篇
  1977年   575篇
  1976年   495篇
  1974年   374篇
  1973年   399篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Our objective was to evaluate the usefulness of the germination vs. the X-ray test in determining the initial viability of seeds of five wild species (Moringa peregrina, Abrus precatorius, Arthrocnemum macrostachyum, Acacia ehrenbergiana and Acacia tortilis) from Saudi Arabia. Usually several days were required to determine the viability of all five species via germination tests. However, X-ray test will give immediate results on filled/viable seeds. Seeds of all species, except Acacia ehrenbergiana and Acacia tortilis showed high viability in both germination (96–72% at 25/15 °C, 94–70% at 35/25 °C) and X-ray (100–80%) test. Furthermore, there was a general agreement between the germination (19%, 14% at 25/15 °C and 17% and 12% at 35/25 °C) and X-ray (8%, 4%) tests in which seed viability of Acacia ehrenbergiana and Acacia tortilis was very low due to insect damaged embryo as shown in X-ray analysis. Seeds of Abruspreca torius have physical dormancy, which was broken by scarification in concentrated sulfuric acid (10 min), and they exhibited high viability in both the germination (83% at 25/15 °C and 81% at 35/25 °C) and X-ray (96%) tests. Most of the nongerminated seeds of the five species except those of Acacia ehrenbergiana and Acacia tortilis, were alive as judged by the tetrazolium test (TZ). Thus, for the five species examined, the X-ray test was proved to be a good and rapid predictor of seed viability.  相似文献   
2.
3.
Silkworm hemolymph contains unique proteins that exhibit anti-apoptotic activity in mammalian cells. Among them, 30 K protein, which is one of the major anti-apoptotic molecules in silkworm hemolymph, has been well investigated. However, little is known about the biological functions of storage protein 1 (SP1), another main protein in silkworm hemolymph. In this study, the anti-apoptotic and anti-oxidative activities of SP1 were analyzed. A stable cell line expressing SP1 was constructed, which showed strong anti-apoptotic effect induced by staurosporine treatment. In addition, the cell line exhibited resistance to oxidative stress caused by hydrogen peroxide. For practical applications of SP1, recombinant SP1 was produced in Escherichia coli, and the supplementation of recombinant SP1 into culture medium exhibited anti-apoptotic and anti-oxidative activities. In addition, SP1 was found to be a cell-penetrating protein and localized in the cytosol as well as on the plasma membrane. The findings showed that SP1 itself is not an anti-oxidant; rather, it mediates intracellular anti-oxidative activity. In conclusion, the cellular resistance of SP1 to apoptosis and oxidative stress will provide a new strategy that could be utilized in the bio-industry for the production of biologics as well as for the development of anti-aging cosmetics.  相似文献   
4.
5.
6.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   
7.
  • Studies on plant electrophysiology are mostly focused on specific traits of single cells. Inspired by the complexity of the signalling network in plants, and by analogy with neurons in human brains, we sought evidence of high complexity in the electrical dynamics of plant signalling and a likely relationship with environmental cues.
  • An EEG‐like standard protocol was adopted for high‐resolution measurements of the electrical signal in Glycine max seedlings. The signals were continuously recorded in the same plants before and after osmotic stimuli with a ?2 MPa mannitol solution. Non‐linear time series analyses methods were used as follows: auto‐correlation and cross‐correlation function, power spectra density function, and complexity of the time series estimated as Approximate Entropy (ApEn).
  • Using Approximate Entropy analysis we found that the level of temporal complexity of the electrical signals was affected by the environmental conditions, decreasing when the plant was subjected to a low osmotic potential. Electrical spikes observed only after stimuli followed a power law distribution, which is indicative of scale invariance.
  • Our results suggest that changes in complexity of the electrical signals could be associated with water stress conditions in plants. We hypothesised that the power law distribution of the spikes could be explained by a self‐organised critical state (SOC) after osmotic stress.
  相似文献   
8.
9.
10.
目的:采用基因芯片技术,分别构建气虚血瘀证大鼠和红花注射液给药处理后气虚血瘀证大鼠的差异基因表达谱,比较并分析,筛选出红花能够治疗气虚血瘀证的关键基因群,并推测其起治疗作用的基因组调控机制。方法:15只SD大鼠随机分为模型组、给药组、空白对照组。模型组和给药组采用疲劳游泳和饥饿饲养处理。造模一周后,给药组尾静脉注射红花注射液(100mg/kg/d),模型组给予相同体积生理盐水;对照组不做任何处理。造模进行两周后处死大鼠,取血检验血流变指标并评价造模情况;另抽取足够的血分离mRNA并逆转录杂交基因芯片;扫描信号分析确定受红花注射液调控的基因;并通过基因数据库查询相关基因功能,结合相关文献分析初步探讨红花作用的机制。结果:两周后经过检验和观察发现模型组大鼠在不同切率下的全血粘度增加,并且其体征表现出虚弱和瘀血的状态、体重下降,确定造模成功;给药组大鼠则相对于模型组的各项检测指标和状态有所改善,确认药物有疗效。在差异基因的比较中,空白组相对于给药组上调基因252条,下调基因54条;给药组相对于模型组上调基因196条,下调基因32条;两次差异表达基因中有16条相同基因,这些差异基因涉及到炎症损伤、免疫调节反应等方面。结论:红花注射液对于气虚血瘀证有治疗作用,在基因层次上是通过抗炎症损伤机制实现的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号