首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10906篇
  免费   1168篇
  国内免费   667篇
  2023年   197篇
  2022年   189篇
  2021年   349篇
  2020年   367篇
  2019年   396篇
  2018年   376篇
  2017年   360篇
  2016年   371篇
  2015年   422篇
  2014年   524篇
  2013年   647篇
  2012年   427篇
  2011年   437篇
  2010年   354篇
  2009年   476篇
  2008年   509篇
  2007年   571篇
  2006年   540篇
  2005年   484篇
  2004年   378篇
  2003年   490篇
  2002年   374篇
  2001年   300篇
  2000年   274篇
  1999年   282篇
  1998年   237篇
  1997年   241篇
  1996年   241篇
  1995年   197篇
  1994年   213篇
  1993年   231篇
  1992年   166篇
  1991年   156篇
  1990年   145篇
  1989年   140篇
  1988年   119篇
  1987年   109篇
  1986年   77篇
  1985年   73篇
  1984年   58篇
  1983年   36篇
  1982年   52篇
  1981年   37篇
  1980年   31篇
  1979年   21篇
  1978年   14篇
  1977年   11篇
  1976年   13篇
  1973年   8篇
  1972年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
实时观测根瘤及根系形态对于豆科植物研究具有重要意义,但目前还缺乏一个便于观测根系、高效结瘤、适宜生长且经济实用的豆科植物培养体系。以蒺藜苜蓿(Medicago truncatula)为植物材料,建立了一种可实时观测根瘤及根系形态的纸袋水培法,并与其它常用方法进行对比。结果表明,依赖于石英砂等固体介质栽培蒺藜苜蓿对根瘤和根系形态的实时观测造成障碍,而水培和喷雾培养等方法的根瘤菌接种效率不高,且不便观测侧根发育情况。采用纸袋水培法探讨了褪黑素对蒺藜苜蓿根系发育的影响,发现褪黑素具有降低根瘤形成效率、抑制侧根伸长、增加侧根数目以及增大侧根与主根之间夹角等作用。因此,纸袋水培法能够高效接种根瘤菌且为实时无损伤观测根瘤及根系形态提供了可能,是一种适用于豆科植物简单有效的培养方法。  相似文献   
2.
3.
There is accumulating evidence that individuals leave their natal area and select a breeding habitat non-randomly by relying upon information about their natal and future breeding environments. This variation in dispersal is not only based on external information (condition dependence) but also depends upon the internal state of individuals (phenotype dependence). As a consequence, not all dispersers are of the same quality or search for the same habitats. In addition, the individual's state is characterized by morphological, physiological or behavioural attributes that might themselves serve as a cue altering the habitat choice of conspecifics. These combined effects of internal and external information have the potential to generate complex movement patterns and could influence population dynamics and colonization processes. Here, we highlight three particular processes that link condition-dependent dispersal, phenotype-dependent dispersal and habitat choice strategies: (1) the relationship between the cause of departure and the dispersers' phenotype; (2) the relationship between the cause of departure and the settlement behaviour and (3) the concept of informed dispersal, where individuals gather and transfer information before and during their movements through the landscape. We review the empirical evidence for these processes with a special emphasis on vertebrate and arthropod model systems, and present case studies that have quantified the impacts of these processes on spatially structured population dynamics. We also discuss recent literature providing strong evidence that individual variation in dispersal has an important impact on both reinforcement and colonization success and therefore must be taken into account when predicting ecological responses to global warming and habitat fragmentation.  相似文献   
4.
5.
6.
7.
Adaptation to heterogeneous environments can occur via phenotypic plasticity, but how often this occurs is unknown. Reciprocal transplant studies provide a rich dataset to address this issue in plant populations because they allow for a determination of the prevalence of plastic versus canalized responses. From 31 reciprocal transplant studies, we quantified the frequency of five possible evolutionary patterns: (1) canalized response–no differentiation: no plasticity, the mean phenotypes of the populations are not different; (2) canalized response–population differentiation: no plasticity, the mean phenotypes of the populations are different; (3) perfect adaptive plasticity: plastic responses with similar reaction norms between populations; (4) adaptive plasticity: plastic responses with parallel, but not congruent reaction norms between populations; and (5) nonadaptive plasticity: plastic responses with differences in the slope of the reaction norms. The analysis included 362 records: 50.8% life‐history traits, 43.6% morphological traits, and 5.5% physiological traits. Across all traits, 52% of the trait records were not plastic, and either showed no difference in means across sites (17%) or differed among sites (83%). Among the 48% of trait records that showed some sort of plasticity, 49.4% showed perfect adaptive plasticity, 19.5% adaptive plasticity, and 31% nonadaptive plasticity. These results suggest that canalized responses are more common than adaptive plasticity as an evolutionary response to environmental heterogeneity.  相似文献   
8.
Alzheimer’s disease (AD) is clinically characterized with progressive memory loss and cognitive decline. Synaptic dysfunction is an early pathological feature that occurs prior to neurodegeneration and memory dysfunction. Mounting evidence suggests that aggregation of amyloid-β (Aβ) and hyperphosphorylated tau leads to synaptic deficits and neurodegeneration, thereby to memory loss. Among the established genetic risk factors for AD, the ɛ4 allele of apolipoprotein E (APOE) is the strongest genetic risk factor. We and others previously demonstrated that apoE regulates Aβ aggregation and clearance in an isoform-dependent manner. While the effect of apoE on Aβ may explain how apoE isoforms differentially affect AD pathogenesis, there are also other underexplored pathogenic mechanisms. They include differential effects of apoE on cerebral energy metabolism, neuroinflammation, neurovascular function, neurogenesis, and synaptic plasticity. ApoE is a major carrier of cholesterols that are required for neuronal activity and injury repair in the brain. Although there are a few conflicting findings and the underlying mechanism is still unclear, several lines of studies demonstrated that apoE4 leads to synaptic deficits and impairment in long-term potentiation, memory and cognition. In this review, we summarize current understanding of apoE function in the brain, with a particular emphasis on its role in synaptic plasticity and the underlying cellular and molecular mechanisms, involving low-density lipoprotein receptor-related protein 1 (LRP1), syndecan, and LRP8/ApoER2.  相似文献   
9.
Small birch plants were grown for up to 80 d in a climate chamber at varied relative addition rates of nitrogen in culture solution, and at ambient (350 μmol mol-1) or elevated (700 μmol mol-1) concentrations of CO2. The relative addition rate of nitrogen controlled relative growth rate accurately and independently of CO2 concentration at sub-optimum levels. During free access to nutrients, relative growth rate was higher at elevated CO2. Higher values of relative growth rate and net assimilation rate were associated with higher values of plant N-concentration. At all N-supply rates, elevated CO2 resulted in higher values of net assimilation rate, whereas leaf weight ratio was independent of CO2. Specific leaf area (and leaf area ratio) was less at higher CO2 and at lower rates of N-supply. Lower values of specific leaf area were partly because of starch accumulation. Nitrogen productivity (growth rate per unit plant nitrogen) was higher at elevated CO2. At sub-optimal N-supply, the higher net assimilation rate at elevated CO2 was offset by a lower leaf area ratio. Carbon dioxide did not affect root/shoot ratio, but a higher fraction of plant dry weight was found in roots at lower N-supply. In the treatment with lowest N-supply, five times as much root length was produced per amount of plant nitrogen in comparison with optimum plants. The specific fine root length at all N-supplies was greater at elevated CO2. These responses of the root system to lower N-supply and elevated CO2 may have a considerable bearing on the acquisition of nutrients in depleted soils at elevated CO2. The advantage of maintaining steady-state nutrition in small plants while investigating the effects of elevated CO2 on growth is emphasized.  相似文献   
10.
Influence of maize root mucilage on soil aggregate stability   总被引:9,自引:0,他引:9  
This study was undertaken to determine the effects of root exudates on soil aggregate stability. Root mucilage was collected from two-month old maize plants (Zea mays L.) Mucilage and glucose solutions were added at a rate of 2.45 g C kg−1 dry soil to silty clay and silt loam soils. Amended soils, placed in serum flasks, were incubated for 42 d with a drying-wetting cycle after 21 d. Evolved CO2 was measured periodically as well as the water-stable aggregates and soluble sugar and polysaccharide content of the soil. In mucilage-amended soils CO2 evolution started with a lag phase of 2–3 days, which was not observed in glucose-amended soils. There was then a sharp increase in evolved CO2 up to day 7. During the second incubation period there were only small differences in evolved C between treatments. Incorporation of mucilage in both soils resulted in a spectacular and immediate increase in soil aggregate stability. Thereafter, the percent of water-stable aggregates quickly decreased parallel to microbial degradation. On completion of the incubation, aggregate stability in the silty clay soil was still significantly higher in the presence of mucilage than in the control. This work supports the assumption that freshly released mucilage is able to stick very rapidly to soil particles and may protect the newly formed aggregates against water destruction. On the silty clay, microbial activity contributes to a stabilization of these established organo-mineral bounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号