首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8891篇
  免费   809篇
  国内免费   1114篇
  2023年   134篇
  2022年   149篇
  2021年   250篇
  2020年   250篇
  2019年   404篇
  2018年   401篇
  2017年   253篇
  2016年   270篇
  2015年   298篇
  2014年   362篇
  2013年   538篇
  2012年   305篇
  2011年   352篇
  2010年   278篇
  2009年   377篇
  2008年   393篇
  2007年   451篇
  2006年   469篇
  2005年   411篇
  2004年   334篇
  2003年   426篇
  2002年   334篇
  2001年   288篇
  2000年   254篇
  1999年   245篇
  1998年   204篇
  1997年   225篇
  1996年   201篇
  1995年   187篇
  1994年   199篇
  1993年   198篇
  1992年   157篇
  1991年   167篇
  1990年   137篇
  1989年   143篇
  1988年   129篇
  1987年   113篇
  1986年   76篇
  1985年   83篇
  1984年   70篇
  1983年   46篇
  1982年   60篇
  1981年   42篇
  1980年   40篇
  1979年   25篇
  1978年   16篇
  1977年   12篇
  1976年   15篇
  1973年   10篇
  1972年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The Langmuir-Blodgett technique and its variants (alternate layers, self-organising mixtures, the semi-amphiphilic technique, the peculiar solid state chemistry in L.B. films) are collective methods which allow physical chemists, with a very small amount of synthetic chemistry, to build up molecular assemblies exhibiting not only the properties of each of their components, but also extra properties which arise from the architecture: cooperativity, anomalous chemical properties, molecular recognition, etc. These new tailored molecular edifices are the basic “brick” of tomorrow's molecular electronics and fine chemistry. These strategies are exemplified here by two active supramolecular edifices which have been successfully designed and built up: an artificial dioxygen trap based on the same principle as hemoglobin, and one molecule thick conductors. Promising applied results have already been obtained in the field of gas sensing with these new conductors, owing to molecular architectural amplification.  相似文献   
2.
The amount of genetic variation for resistance to foot rot caused by Pseudocercosporella herpotrichoides, Fusarium spp., and Microdochium nivale and for resistance to head blight caused by Fusarium culmorum are important parameters when estimating selection gain from recurrent selection in winter rye. One-hundred and eighty-six full-sib families of the selfincompatible population variety Halo, representing the Petkus gene pool, were tested for foot-rot resistance at five German location-year combinations (environments) and for head-blight resistance in three environments with artificial inoculation in all but one environment. Foot-rot rating was based on 25 stems per plot scored individually on a 1–9 scale. Head-blight resistance was plotwise scored on a 1–9 scale and, additionally, grain-weight per spike was measured relative to the non-inoculated control plots. Significant estimates of genotypic variance and medium-sized heritabilities (h 2=0.51–0.69) were observed in the combined analyses for all resistance traits. In four out of five environments, the amount of genetic variance was substantially smaller for foot-rot than for head-blight rating. Considerable environmental effects and significant genotype-environment interactions were found for both foot-rot and head-blight resistance. Coefficients of error-corrected correlation among environments were considerably closer than phenotypic correlations. No significant association was found between the resistances to both diseases (r=-0.20 to 0.17). In conclusion, intra-population improvement by recurrent selection should lead to substantial higher foot-rot and head-blight resistances due to significant quantitative genetic variation within Halo. Selection should be carried out in several environments. Lack of correlation between foot-rot and head-blight resistance requires separate infection tests for improving both resistances.  相似文献   
3.
The mechanism of the self-regulation of gene expression in living cells is generally explained by considering complicated networks of key-lock relationships, and in fact there is a large body of evidence on a hugenumber of key-lock relationships. However, in the present article we stress that with the network hypothesis alone it is impossible to fully explain the mechanism of self-regulation in life. Recently, it has been established that individual giant DNA molecules, larger than several tens of kilo base pairs, undergo a large discrete transition in their higher-order structure. It has become clear that nonspecific weak interactions with various chemicals, suchas polyamines, small salts, ATP and RNA, cause on/off switching in the higher-order structure of DNA. Thus, the field parameters of the cellular environment should play important roles in the mechanism of self-regulation, in addition to networks of key and locks. This conformational transition induced by field parameters may be related to rigid on/off regulation, whereas key-lock relationships may be involved in a more flexible control of gene expression.  相似文献   
4.
5.
目录     
《生态学杂志》2015,26(7):0
  相似文献   
6.
Background and Aims Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature.Methods Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia ‘Chandler’) using minirhizotron techniques.Key Results Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production.Conclusions The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs.  相似文献   
7.
8.
Soil structural aspects of decomposition of organic matter by micro-organisms   总被引:15,自引:0,他引:15  
Soil architecture is the dominant control over microbially mediated decomposition processes in terrestrial ecosystems. Organic matter is physically protected in soil so that large amounts of well-decomposable compounds can be found in the vicinity of largely starving microbial populations. Among the mechanisms proposed to explain the phenomena of physical protection in soil are adsorption of organics on inorganic clay surfaces and entrapment of materials in aggregates or in places inaccessible to microbes. Indirect evidence for the existence of physical protection in soil is provided by the occurrence of a burst of microbial activity and related increased decomposition rates following disruption of soil structures, either by natural processes such as the remoistening of a dried soil or by human activities such as ploughing. In contrast, soil compaction has only little effect on the transformation of 14C-glucose. Another mechanism of control by soil structure and texture on decomposition in terrestrial ecosystems is through their impact on microbial turnover processes. The microbial population is not only the main biological agent of decomposition in soil, it is also an important, albeit small, pool through which most of the organic matter in soil passes. Estimates on the relative importance of different mechanisms controlling decomposition in soil could be derived from results of combined tracer and modelling studies. However, suitable methodology to quantify the relation between soil structure and biological processes as a function of different types and conditions of soils is still lacking.  相似文献   
9.
The gene of a bacterial lysine decarboxylase (ldc) fused to arbcS transit peptide coding sequence (tp), and under the control of the CaMV 35S promoter, was expressed in hairy root cultures ofNicotiana tabacum. The fusion of theldc to the targeting signal sequence improved the performance of the bacterial gene in the plant cells in many respects. Nearly all transgenic hairy root cultures harbouring the35S-tp-ldc gene contained distinctly higher lysine decarboxylase activity (from 1.5 to 30 pkat LDC per mg protein) than those which had been transformed with constructs in which the gene had been directly cloned behind the CaMV 35S promoter. The higher enzyme activity led to the accumulation of up to 0.7% cadaverine on a dry mass basis. In addition, part of the cadaverine pool was used for increased biosynthesis of anabasine, an alkaloid which was hardly detectable in control cultures. The best line contained anabasine levels of 0.5% dry mass, which could further be enhanced by feeding of lysine.  相似文献   
10.
Hydraulic lift occurs in some deep-rooted shrub and herbaceous species. In this process, water taken up by deep roots from the moist subsoil is delivered to the drier topsoil where it is later reabsorbed by shallow roots. However, little is known about the existence of hydraulic lift in shallow-rooted xeric species. The objectives of this study were 1) to ascertain whether hydraulic lift exists in Gutierrezia sarothrae (broom snakeweed), a widespread North American desert species with a shallow root system, grown in pot and field conditions and 2) if it does, how much water can be transferred from the subsoil to the 30 cm topsoil during the night. Snakeweed seedlings were transplanted in buried pots allowing the deeper roots to grow into the subsoil 30 cm below the surface. Soil water content inside and outside of the pot was measured seasonally and diurnally with time domain reflectometry technique (TDR). An increase in water content was detected in the pot after the plant was covered for 3 h by an opaque plastic bag during the day, suggesting hydraulic lift from deeper depths and exudation of water into the drier topsoil. Root exudation was also observed on native range sites dominated by snakeweed. Water efflux in the pot was 271 g per plant per night. which was equivalent to 15.3% of the extrapolated, porometer-derived whole-plant daily transpiration. Hydraulic lift observed in Gutierrezia improved water uptake during the day when evaporative demand is high and less water is available in the topsoil. We concluded that hydraulic lift might help snakeweed to alleviate the effect of water stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号