首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9625篇
  免费   1274篇
  国内免费   512篇
  2024年   1篇
  2023年   268篇
  2022年   200篇
  2021年   293篇
  2020年   492篇
  2019年   545篇
  2018年   442篇
  2017年   449篇
  2016年   408篇
  2015年   422篇
  2014年   451篇
  2013年   630篇
  2012年   420篇
  2011年   409篇
  2010年   373篇
  2009年   521篇
  2008年   531篇
  2007年   575篇
  2006年   507篇
  2005年   455篇
  2004年   394篇
  2003年   336篇
  2002年   304篇
  2001年   312篇
  2000年   250篇
  1999年   249篇
  1998年   210篇
  1997年   164篇
  1996年   120篇
  1995年   117篇
  1994年   120篇
  1993年   72篇
  1992年   65篇
  1991年   51篇
  1990年   71篇
  1989年   17篇
  1988年   23篇
  1987年   34篇
  1986年   13篇
  1985年   23篇
  1984年   22篇
  1983年   14篇
  1982年   19篇
  1981年   4篇
  1980年   6篇
  1979年   1篇
  1978年   4篇
  1977年   3篇
  1974年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
A key question in ecology is under which conditions ecosystem structure tends to be controlled by resource availability vs. consumer pressure. Several hypotheses derived from theory, experiments and observational field studies have been advanced, yet a unified explanation remains elusive. Here, we identify common predictors of trophic control in a synthetic analysis of 52 observational field studies conducted within marine ecosystems across the Northern Hemisphere and published between 1951 and 2014. Spatial regression analysis of 45 candidate variables revealed temperature to be the dominant predictor, with unimodal effects on trophic control operating both directly (r2 = 0.32; P < 0.0001) and indirectly through influences on turnover rate and quality of primary production, biodiversity and omnivory. These findings indicate that temperature is an overarching determinant of the trophic dynamics of marine ecosystems, and that variation in ocean temperature will affect the trophic structure of marine ecosystems through both direct and indirect mechanisms.  相似文献   
2.
The production of waste creates both direct and indirect environmental impacts. A range of strategies are available to reduce the generation of waste by industry and households, and to select waste treatment approaches that minimize environmental harm. However, evaluating these strategies requires reliable and detailed data on waste production and treatment. Unfortunately, published Australian waste data are typically highly aggregated, published by a variety of entities in different formats, and do not form a complete time‐series. We demonstrate a technique for constructing a multi‐regional waste supply‐use (MRWSU) framework for Australia using information from numerous waste data sources. This is the first MRWSU framework to be constructed (to the authors' knowledge) and the first sub‐national waste input‐output framework to be constructed for Australia. We construct the framework using the Industrial Ecology Virtual Laboratory (IELab), a cloud‐hosted computational platform for building Australian multi‐regional input‐output tables. The structure of the framework complies with the System of Environmental‐Economic Accounting (SEEA). We demonstrate the use of the MRWSU framework by calculating waste footprints that enumerate the full supply chain waste production for Australian consumers.  相似文献   
3.
Geert van Wirdum 《Hydrobiologia》1993,265(1-3):129-153
A survey of base-rich wetlands in The Netherlands is presented. The main area of their occurrence is the low-lying Holocene part of the country, until some thousand years ago a large and coherent wetland landscape: the Holland wetland. The development of various parts of the Holland wetland into marshes, fens and bogs can be understood from hydrological relations in mire basins, as recognized in the distinction of primary, secondary and tertiary mire basin stages. Presently, the remnants of the Holland wetland are separate base-rich wetlands. The succession of their vegetation reflects various abiotic conditions and human influences. Three main developmental periods are distinguished as regards these factors. The first, geological period of mire development is seen as a post-glacial relaxation, with the inertia due to the considerable mass of wetland as a stabilizing factor. Biological “grazing” influences, as an aspect of utilization by humans, converted base-rich wetlands to whole new types in the second, historical period. Presently, mass and harvesting have decreased in importance, and actual successions in terrestrializing turbaries seem to reflect rapidly changing environmental conditions. Human control could well become the most important factor in the future development of wetland nature. The present value of open fen vegetation strongly depends on the continuation of the historical harvesting. The development of wooded fen may help to increase the mass of wetland in the future. Best results in terms of biodiversity are expected when their base state is maintained through water management. The vegetation and hydrology of floating fens in terrestrializing turbaries is treated in some more detail. Various lines and phases in the succession are distinguished. Open fen vegetation at base-rich, yet nutrient-poor sites is very rich in species threatened elsewhere. The fast acidification of certain such fens is attributed to hydrological and management factors. This acidification is illustrated in the profile of a floating raft sample. At the scale of these small fens, the elemental structure comprising base-rich fen, transitional fen and bog vegetation, is not as stable as it was in the large Holland wetland. A critical role seems to be played by the supply of bases with the water influx. The changing base state is supposed to change the nutrient cycling to such an extent that it would be correct to call this trophic excitation of the ecosystem, rather than just eutrophication. Eutrophication indicates a quantitative reaction to an increased nutrient supply, the internal system being unaltered. The drainage of fens, resulting in an increased productivity of the vegetation, provides another example of excitation, to the effect that the functional system is dramatically changed internally.  相似文献   
4.
Conservation genetics: beyond the maintenance of marker diversity   总被引:8,自引:0,他引:8  
One of the major problems faced by conservation biologists is the allocation of scarce resources to an overwhelmingly large number of species in need of preservation efforts. Both demographic and genetic information have been brought to bear on this problem; however, the role of information obtained from genetic markers has largely been limited to the characterization of gene frequencies and patterns of diversity. While the genetic consequences of rarity may be a contributing factor to endangerment, it is widely recognized that demographic factors often may be more important. Because patterns of genetic marker variation are influenced by the same demographic factors of interest to the conservation biologist, it is possible to extract useful demographic information from genetic marker data. Such an approach may be productive for determining plant mating systems, inbreeding depression, effective population size, and metapopulation structure. In many cases, however, data consisting only of marker frequencies are inadequate for these purposes. Development of genealogical based analytical methods coupled with studies of DNA sequence variation within and among populations is likely to yield the most information on demographic processes from genetic marker data. Indeed, in some cases it may be the only means of obtaining information on the long-term demographic properties that may be most useful for determining the future prospects of a species of interest.  相似文献   
5.
6.
Climate change is expected to alter precipitation patterns worldwide, which will affect streamflow in riverine ecosystems. It is vital to understand the impacts of projected flow variations, especially in tropical regions where the effects of climate change are expected to be one of the earliest to emerge. Space‐for‐time substitutions have been successful at predicting effects of climate change in terrestrial systems by using a spatial gradient to mimic the projected temporal change. However, concerns have been raised that the spatial variability in these models might not reflect the temporal variability. We utilized a well‐constrained rainfall gradient on Hawaii Island to determine (a) how predicted decreases in flow and increases in flow variability affect stream food resources and consumers and (b) if using a high temporal (monthly, four streams) or a high spatial (annual, eight streams) resolution sampling scheme would alter the results of a space‐for‐time substitution. Declines in benthic and suspended resource quantity (10‐ to 40‐fold) and quality (shift from macrophyte to leaf litter dominated) contributed to 35‐fold decreases in macroinvertebrate biomass with predicted changes in the magnitude and variability in the flow. Invertebrate composition switched from caddisflies and damselflies to taxa with faster turnover rates (mosquitoes, copepods). Changes in resource and consumer composition patterns were stronger with high temporal resolution sampling. However, trends and ranges of results did not differ between the two sampling regimes, indicating that a suitable, well‐constrained spatial gradient is an appropriate tool for examining temporal change. Our study is the first to investigate resource to community wide effects of climate change on tropical streams on a spatial and temporal scale. We determined that predicted flow alterations would decrease stream resource and consumer quantity and quality, which can alter stream function, as well as biomass and habitat for freshwater, marine, and terrestrial consumers dependent on these resources.  相似文献   
7.
8.
Dietary restriction (DR) is the most consistent environmental manipulation to extend lifespan. Originally thought to be caused by a reduction in caloric intake, recent evidence suggests that macronutrient intake underpins the effect of DR. The prevailing evolutionary explanations for the DR response are conceptualized under the caloric restriction paradigm, necessitating reconsideration of how or whether these evolutionary explanations fit this macronutrient perspective. In the authors’ opinion, none of the current evolutionary explanations of DR adequately explain the intricacies of observed results; instead a context-dependent combination of these theories is suggested which is likely to reflect reality. In reviewing the field, it is proposed that the ability to track the destination of different macronutrients within the body will be key to establishing the relative roles of the competing theories. Understanding the evolution of the DR response and its ecological relevance is critical to understanding variation in DR responses and their relevance outside laboratory environments.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号