首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1612篇
  免费   224篇
  国内免费   213篇
  2023年   48篇
  2022年   54篇
  2021年   77篇
  2020年   86篇
  2019年   118篇
  2018年   115篇
  2017年   72篇
  2016年   70篇
  2015年   51篇
  2014年   87篇
  2013年   113篇
  2012年   72篇
  2011年   60篇
  2010年   74篇
  2009年   86篇
  2008年   98篇
  2007年   82篇
  2006年   74篇
  2005年   81篇
  2004年   43篇
  2003年   57篇
  2002年   50篇
  2001年   32篇
  2000年   27篇
  1999年   23篇
  1998年   16篇
  1997年   23篇
  1996年   19篇
  1995年   31篇
  1994年   25篇
  1993年   20篇
  1992年   15篇
  1991年   10篇
  1990年   7篇
  1989年   14篇
  1988年   12篇
  1987年   13篇
  1986年   10篇
  1985年   12篇
  1984年   10篇
  1983年   5篇
  1982年   11篇
  1981年   10篇
  1980年   7篇
  1979年   8篇
  1978年   5篇
  1976年   6篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
排序方式: 共有2049条查询结果,搜索用时 15 毫秒
1.
Mitochondrial hexokinase (HK) and creatine kinase (CK) known to form complexes with a voltage dependent anion channel (VDAC) have been reported to increase cell death resistance under hypoxia/anoxia. In this work we propose a new, non-Mitchell mechanism of generation of the inner and outer membrane potentials at anaerobic conditions. The driving force is provided by the Gibbs free energy of the HK and CK reactions associated with the VDAC–HK and the ANT (adenine nucleotide translocator)–CK–VDAC complexes, respectively, both functioning as voltage generators. In the absence of oxygen, the cytosolic creatine phosphate can be directly used by the ANT–CK–VDAC contact sites to produce ATP from ADP in the mitochondrial matrix. After that, ATP released through the fraction of unbound ANTs in exchange for ADP is used in the mitochondrial intermembrane space by the outer membrane VDAC–HK electrogenic complexes to convert cytosolic glucose into glucose-6-phosphate. A simple computational model based on the application of Ohm's law to an equivalent electrical circuit showed a possibility of generation of the inner membrane potential up to − 160 mV, under certain conditions, and of relatively high outer membrane potential without wasting of ATP that normally leads to cell death. The calculated membrane potentials depended on the restriction of ATP/ADP diffusion in narrow cristae and through the cristae junctions. We suggest that high inner membrane potential and calcium extrusion from the mitochondrial intermembrane space by generated positive outer membrane potential prevent mitochondrial permeability transition, thus allowing the maintenance of mitochondrial integrity and cell survival in the absence of oxygen.  相似文献   
2.
3.
Evolutionary analysis of the picornavirus family   总被引:1,自引:0,他引:1  
An exhaustive evolutionary analysis of the picornavirus family has been carried out using the amino acid sequences of several proteins of the viruses including: the capsid proteins (1D, 1B, and 1C) situated at the 5 end of the genome and responsible for the serotype of the viruses, and the viral polymerase (3D), located at the 3 end of the genome. The evolutionary relationships found among the viruses studied support the new classification, recently suggested, in contrast to the classical one, and the existence of a new genus for the picornavirus family. In the new taxonomic organization, five genera form the picornavirus family: (1) aphthoviruses, (2) cardioviruses, (3) hepatoviruses (previously classified as enteroviruses), (4) renteroviruses (which mainly constitute a combination of the previous genera rhinovirus and enterovirus), and (5) a new genus, with a new and unique representative: the echovirus 22. Our analysis also allowed us, for the first time, to propose the most probable sequence of speciation events to have given rise to the current picornavirus family.The bootstrap procedure was used to check the reliability of the phylogenetic trees obtained. The application of the method of the statistical geometry in distance space to internal branches of the tree revealed a high degree of evolutionary noise, which makes the resolution of some internal branching points difficult. Correspondence to: J. Dopazo  相似文献   
4.
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.  相似文献   
5.
中国梧桐属(Firmiana)在世界梧桐属中占比较大,且除梧桐外其余种均为中国特有且分布范围狭窄的植物种,灭绝风险大,研究气候变化对中国梧桐属树种的影响对于维护生物多样性具有重要的意义。结合多时期第六次国际气候耦合模式比较计划(CMIP6)气候变量数据和中国八种梧桐属树种的分布数据,基于R语言kuenm程序包优化的最大熵(Maxent)模型模拟分析中国八种梧桐属树种在多尺度下的潜在适生区,得出梧桐属最适宜的模拟尺度、潜在适生区的面积变化和迁移方向、梧桐属多样性保护关键区域及保护空缺。结果表明:(1)梧桐属最适宜的模拟尺度为亚洲;(2) Maxent模型的接收者操作特征曲线下面积(AUC)值均大于0.9,表明模型对梧桐属潜在适生区预测结果具有较高准确度;(3)气候变化影响下除云南梧桐(Firmiana major)外其它树种的潜在适生区都将在未来有所扩大;(4)中国八种梧桐属树种潜在适生区迁移方向主要为东西向,南北向大跨度迁移较少,纬度变化不大;(5)丹霞梧桐(Firmiana danxiaensis)的稳定潜在适生区最小;(6)中国梧桐属多样性保护关键区域主要分布于广西壮族自治区及云南、广东、海南等省区;(7)中国梧桐属多样性保护空缺区域主要分布于广西壮族自治区中部及海南省北部;(8)梧桐属多样性保护关键区域正在为人造地表所侵蚀。研究分析气候变化对中国八种梧桐属树种的影响及其潜在适生区变化、中国梧桐属多样性保护状态,可为中国梧桐属建立多样性保护廊道提供相关建议,为制定多样性保护规划及相应措施提供参考。  相似文献   
6.
S. Rackovsky 《Proteins》2015,83(11):1923-1928
We examine the utility of informatic‐based methods in computational protein biophysics. To do so, we use newly developed metric functions to define completely independent sequence and structure spaces for a large database of proteins. By investigating the relationship between these spaces, we demonstrate quantitatively the limits of knowledge‐based correlation between the sequences and structures of proteins. It is shown that there are well‐defined, nonlinear regions of protein space in which dissimilar structures map onto similar sequences (the conformational switch), and dissimilar sequences map onto similar structures (remote homology). These nonlinearities are shown to be quite common—almost half the proteins in our database fall into one or the other of these two regions. They are not anomalies, but rather intrinsic properties of structural encoding in amino acid sequences. It follows that extreme care must be exercised in using bioinformatic data as a basis for computational structure prediction. The implications of these results for protein evolution are examined. Proteins 2015; 83:1923–1928. © 2015 Wiley Periodicals, Inc.  相似文献   
7.

Background

Mitochondria play essential roles in the life and death of almost all eukaryotic cells, ranging from single-celled to multi-cellular organisms that display tissue and developmental differentiation. As mitochondria only arose once in evolution, much can be learned from studying single celled model systems such as yeast and applying this knowledge to other organisms. However, two billion years of evolution have also resulted in substantial divergence in mitochondrial function between eukaryotic organisms.

Scope of Review

Here we review our current understanding of the mechanisms of mitochondrial protein import between plants and yeast (Saccharomyces cerevisiae) and identify a high level of conservation for the essential subunits of plant mitochondrial import apparatus. Furthermore, we investigate examples whereby divergence and acquisition of functions have arisen and highlight the emerging examples of interactions between the import apparatus and components of the respiratory chain.

Major conclusions

After more than three decades of research into the components and mechanisms of mitochondrial protein import of plants and yeast, the differences between these systems are examined. Specifically, expansions of the small gene families that encode the mitochondrial protein import apparatus in plants are detailed, and their essential role in seed viability is revealed.

General significance

These findings point to the essential role of the inner mitochondrial protein translocases in Arabidopsis, establishing their necessity for seed viability and the crucial role of mitochondrial biogenesis during germination. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   
8.
Syringomyelia (a spinal cord cyst) usually develops as a result of conditions that cause cerebrospinal fluid (CSF) obstruction. The mechanism of syrinx formation and enlargement remains unclear, though previous studies suggest that the fluid enters via the perivascular spaces (PVS) of the penetrating arteries of the spinal cord, and that alterations in the CSF pulse timing and pressure could contribute to enhanced PVS inflow. This study uses an idealised computational model of the PVS to investigate the factors that influence peri-arterial fluid flow. First, we used three sample patient-specific models to explore whether changes in subarachnoid space (SAS) pressures in individuals with and without syringomyelia could influence PVS inflow. Second we conducted a parametric study to determine how features of the CSF pulse altered perivascular fluid, including alterations to timing and magnitude of the peak SAS pressure, the timing of reversal from high to low pressure (diastolic phase), and the area under the pressure–time curve. The model for the patient with syringomyelia had higher net CSF inflow to the PVS than the two subjects without syringomyelia. In the parametric study, only increasing the area under the high pressure region of the SAS pulse substantially increased PVS inflow, when coupled with a temporal shift in arterial and SAS pulses. This suggests that a period of sustained high SAS pressure while arterial diameter is low may increase net CSF pumping into the PVS.  相似文献   
9.
Xuejiao Li  Baohua Yue 《Molecular simulation》2017,43(13-16):1307-1314
Abstract

The finite element analysis is applied to the study of the redistribution and transport of protons in model nanophase separated polymeric acid–base composite membranes by the Poisson–Boltzmann equation coupled with the acid and base dissociation equilibriums for the first time. Space charge redistribution in terms of proton and hydroxide redistributions is observed at the interfaces of acidic and basic domains. The space charge redistribution causes internal electrostatic potential, and thus, promotes the macroscopic transport of protons in the acid–base composite membranes.  相似文献   
10.
京津冀地区生态空间识别研究   总被引:13,自引:5,他引:8  
迟妍妍  许开鹏  王晶晶  张丽苹 《生态学报》2018,38(23):8555-8563
生态空间识别是有效维护生态环境和减缓生态退化的有效方法之一,也是生态学目前研究的重要领域。京津冀地区自然禀赋先天不足,由于持续高强度的开发活动,水资源和土地资源的生态压力增大,脆弱的自然生态本底与经济社会发展的矛盾冲突激烈。为了探索基于可持续发展目标的生态空间管控有效方法,依据生态系统服务功能重要性和敏感性评价,以及重点生态功能区、重要生态功能区和生物多样性保护优先区等生态保护重要区域识别,确定了京津冀地区的生态空间。浑善达克沙漠化防治生态功能区、冀北燕山山区和冀西太行山山区,这些重要的区域关系到京津冀地区水资源和生态安全,是京津冀生态安全的重要屏障。生态空间识别将为京津冀地区社会经济可持续发展提供相应的科学依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号