首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141243篇
  免费   9575篇
  国内免费   13485篇
  2023年   1942篇
  2022年   2205篇
  2021年   3667篇
  2020年   3707篇
  2019年   4550篇
  2018年   3936篇
  2017年   3513篇
  2016年   3911篇
  2015年   5752篇
  2014年   9467篇
  2013年   11075篇
  2012年   7312篇
  2011年   8821篇
  2010年   6508篇
  2009年   7327篇
  2008年   7435篇
  2007年   7998篇
  2006年   6399篇
  2005年   5878篇
  2004年   4661篇
  2003年   4171篇
  2002年   3632篇
  2001年   2741篇
  2000年   2525篇
  1999年   2343篇
  1998年   2069篇
  1997年   1803篇
  1996年   1783篇
  1995年   1960篇
  1994年   1817篇
  1993年   1687篇
  1992年   1543篇
  1991年   1373篇
  1990年   1328篇
  1989年   1259篇
  1988年   1125篇
  1987年   1017篇
  1986年   808篇
  1985年   1376篇
  1984年   1886篇
  1983年   1252篇
  1982年   1589篇
  1981年   1320篇
  1980年   1101篇
  1979年   1008篇
  1978年   680篇
  1977年   636篇
  1976年   570篇
  1974年   427篇
  1973年   457篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
There is a diverse range of microbiological challenges facing the food, healthcare and clinical sectors. The increasing and pervasive resistance to broad‐spectrum antibiotics and health‐related concerns with many biocidal agents drives research for novel and complementary antimicrobial approaches. Biofilms display increased mechanical and antimicrobial stability and are the subject of extensive research. Cold plasmas (CP) have rapidly evolved as a technology for microbial decontamination, wound healing and cancer treatment, owing to the chemical and bio‐active radicals generated known collectively as reactive oxygen and nitrogen species. This review outlines the basics of CP technology and discusses the interactions with a range of microbiological targets. Advances in mechanistic insights are presented and applications to food and clinical issues are discussed. The possibility of tailoring CP to control specific microbiological challenges is apparent. This review focuses on microbiological issues in relation to food‐ and healthcare‐associated human infections, the role of CP in their elimination and the current status of plasma mechanisms of action.  相似文献   
2.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   
3.
In alpine regions worldwide, climate change is dramatically altering ecosystems and affecting biodiversity in many ways. For streams, receding alpine glaciers and snowfields, paired with altered precipitation regimes, are driving shifts in hydrology, species distributions, basal resources, and threatening the very existence of some habitats and biota. Alpine streams harbour substantial species and genetic diversity due to significant habitat insularity and environmental heterogeneity. Climate change is expected to affect alpine stream biodiversity across many levels of biological resolution from micro‐ to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism‐focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call for increased synthesis across existing approaches to improve understanding of how these imperiled ecosystems are responding to rapid environmental change. We then take a forward‐looking viewpoint on how alpine stream biologists can make better use of existing data sets through temporal comparisons, integrate remote sensing and geographic information system (GIS) technologies, and apply genomic tools to refine knowledge of underlying evolutionary processes. We conclude with comments about the future of biodiversity conservation in alpine streams to confront the daunting challenge of mitigating the effects of rapid environmental change in these sentinel ecosystems.  相似文献   
4.
5.
6.
7.
8.
9.
Macroalgae harbour specific microbial communities on their surface that have functions related to host health and defence. In this study, the bacterial biofilm of the marine brown alga Fucus spiralis was investigated using 16S rRNA gene amplicon-based analysis and isolation of bacteria. Rhodobacteraceae (Alphaproteobacteria) were the predominant family constituting 23% of the epibacterial community. At the genus level, Sulfitobacter, Loktanella, Octadecabacter and a previously undescribed cluster were most abundant, and together they comprised 89% of the Rhodobacteraceae. Supported by a specific PCR approach, 23 different Rhodobacteraceae-affiliated strains were isolated from the surface of F. spiralis, which belonged to 12 established and three new genera. For seven strains, closely related sequences were detected in the 16S rRNA gene dataset. Growth experiments with substrates known to be produced by Fucus spp. showed that all of them were consumed by at least three strains, and vitamin B12 was produced by 70% of the isolates. Since growth of F. spiralis depends on B12 supplementation, bacteria may provide the alga with this vitamin. Most strains produced siderophores, which can enhance algal growth under iron-deficient conditions. Inhibiting properties against other bacteria were only observed when F. spiralis material was present in the medium. Thus, the physiological properties of the isolates indicated adaption to an epiphytic lifestyle.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号