首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   5篇
  2020年   1篇
  2017年   2篇
  2016年   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2008年   2篇
  2007年   1篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
Stevens TJ  Paoli M 《Proteins》2008,70(2):378-387
The beta-propeller fold is a phylogenetically widespread, common protein architecture able to support a range of different functions such as catalysis, ligand binding and transport, regulation and protein binding. Interestingly, it appears that the beta-propeller topology is also compatible with strikingly diverse sequences. Amongst this diversity, there are three large groups of proteins with related sequences and very important cellular and intercellular regulatory functions: WD, kelch, and YWTD proteins. A common characteristic between these protein families is that their sequences, while distinct, all contain internal repeats 40-45 residues long. Through a pangenomic analysis using internal repeat profiles derived from the structurally known propeller modules of the eukaryotic protein RCC1 and the related prokaryotic protein BLIP-II, we have defined a new superfamily of propeller repeats, the RCC1-like repeats (RLRs). These sequences turn out to be more phylogenetically widespread than other large groups of propeller proteins, occurring in both prokaryotic and eukaryotic genomes. Interestingly, our research showed that RLR domains with different numbers of repeats exist, ranging from 3 to 7, and possibly more. A novel, intriguing finding is the discovery of sequences with 3 repeats, as well as proteins with 10 modular units, though in the latter case it is not clear whether these are made of two 5-bladed domains or a single, novel 10-bladed propeller. In addition, the results indicate that circular permutation events may have taken place in the evolution of these proteins. It is now established that the group of RLR proteins is extremely numerous and is characterized by unique, remarkable features which place it in a position of special interest as an important superfamily of proteins in nature.  相似文献   
2.
Sortilin is a multifunctional receptor involved in sorting and apoptosis. We have previously reported a 2.0‐Å structure of the Vps10 ectodomain in complex with one of its ligands, the tridecapeptide neurotensin. Here we set out to further characterize the structural properties of sortilin and its interaction with neurotensin. To this end, we have determined a new 2.7 Å structure using a crystal grown with a 10‐fold increased concentration of neurotensin. Here a second peptide fragment was observed within the Vps10 β‐propeller, which may in principle either represent a second molecule of neurotensin or the N‐terminal part of the molecule bound at the previously identified binding site. However, in vitro binding experiments strongly favor the latter hypothesis. Neurotensin thus appears to bind with a 1:1 stoichiometry, and whereas the N‐terminus does not bind on its own, it enhances the affinity in context of full‐length neurotensin. We conclude that the N‐terminus of neurotensin probably functions as an affinity enhancer for binding to sortilin by engaging the second binding site. Crystal packing differs partly from the previous structure, which may be due to variations in the degree and pattern of glycosylations. Consequently, a notable hydrophobic loop, not modeled previously, could now be traced. A computational analysis suggests that this and a neighboring loop may insert into the membrane and thus restrain movement of the Vps10 domain. We have, furthermore, mapped all N‐linked glycosylations of CHO‐expressed human sortilin by mass spectrometry and find that their locations are compatible with membrane insertion of the hydrophobic loops.  相似文献   
3.
In clathrin-mediated membrane traffic, clathrin does not bind directly to cargo and instead binds to adaptors that mediate this function. For endocytosis, the main adaptor is the adaptor protein (AP)-2 complex, but it is uncertain how clathrin contacts AP-2. Here we tested in human cells the importance of the three binding sites that have been identified so far on the N-terminal domain (NTD) of clathrin. We find that mutation of each of the three sites on the NTD, alone or in combination, does not block clathrin/AP-2-mediated endocytosis in the same way as deletion of the NTD. We report here the fourth and final site on the NTD that is required for clathrin/AP-2-mediated endocytic function. Each of the four interaction sites can operate alone to mediate endocytosis. The observed functional redundancy between interaction sites on the NTD explains how productivity of clathrin-coated vesicle formation is ensured.  相似文献   
4.
Recently, we engineered Pichia pastoris Muts strains to produce several beta‐propeller phytases, one from Bacillus subtilis and the others designed by a structure‐guided consensus approach. Furthermore, we demonstrated the ability of P. pastoris to produce and secrete these phytases in an active form in shake‐flask cultures. In the present work, we used a design of experiments strategy (Simplex optimization method) to optimize five environmental factors that define the culture conditions in the induction step to increase beta‐propeller phytase production in P. pastoris bioreactor cultures. With the optimization process, up to 347,682 U (82,814 U/L or 6.4 g/L culture medium) of phytase at 68 h of induction was achieved. In addition, the impact of the optimization process on the physiological response of the host was evaluated. The results indicate that the increase in extracellular phytase production through the optimization process was correlated with an increase in metabolic activity of P. pastoris, shown by an increase in oxygen demand and methanol consumption, that increase the specific growth rate. The increase in extracellular phytase production also occurred with a decrease in extracellular protease activity. Moreover, the optimized culture conditions increased the recombinant protein secretion by up to 88%, along with the extracellular phytase production efficiency per cell. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1377–1385, 2013  相似文献   
5.
Watercraft-related mortality represents 1,253 (24.9%) of 5,033 Florida manatee ( Trichechus manatus latirostris ) deaths recorded between 1 January 1979 and 31 December 2004. Wound patterns generated by collisions with watercraft are diagnostic. Sets of cuts and scrapes that are roughly equidistant and perpendicular to the direction of vessel travel are consistent with lacerations made by propeller blades. From these lesions, estimates of propeller diameter, pitch, rotation, and direction of travel may be obtained. Considerable overlap of propeller sizes and pitches on different size vessels, common use of counter rotation propellers, and numerous other complicating factors may confound efforts to accurately predict vessel size and type from propeller wounds. Of the more than one million watercraft registered in Florida, 98% are ≤12.2 m (40 ft), yet watercraft 5.3–36.6 m (17.5–120 ft) are known to have killed manatees. Analysis of a 5-yr subset of mortality data suggests that a disproportionate number of propeller-caused watercraft-related mortalities could be attributed to propeller diameters ≥43.2 cm (17 in.), inferring that these were caused by watercraft ≥12.2 m (40 ft).  相似文献   
6.
The influences of impeller types on morphology and protein expression were investigated in a submerged culture ofAspergillus oryzae. The impeller types strongly affected mycelial morphology and protein production in batch and fed-batch fermentations. Cells that were cultured by propeller agitation grew in the form of a pellet, whereas cells that were cultured by turbine agitation grew in a freely dispersed-hyphal manner and in a clumped form. Pellet-grown cells showed high levels of protein production for both the intracellular heterologous protein (β-glucuronidase) and the extracellularly homologous protein (α-amylase). The feeding mode of the carbon source also influenced the morphological distribution and protein expression in fed-batch fermentation ofA. oryzae. Pulsed-feeding mainly showed high protein expression and homogeneous distribution of pellet whereas continuous feeding resulted in less protein expression and heterogeneous distribution with pellet and dispersed-hyphae. The pellet growth with propeller agitation paralleling with the pulsed-feeding of carbon source showed a high level of protein production in the submerged fed-batch fermentation of recombinantA. oryzae.  相似文献   
7.
It is now possible to identify over 30 functional subfamilies among the WD-repeat-containing proteins found in the completed genomes. The majority of these subfamilies have at least one member for which experimental data allow assignment to a cellular pathway or process. Half of the 63 WD-repeat-containing proteins in Saccharomyces cerevisiae, half of the 70 in Caenorhabditis elegans, and a third of the 100 plus predicted in Drosophila can be assigned to 23 of these functional subfamilies. Perhaps indicative of the future, 33 WD-repeat-containing proteins from the partial genome of Arabidopsis thaliana can now be assigned to 18 of these subfamilies. These assignments have been made possible by combining traditional sequence similarity with an implied common beta propeller structural context to obtain measures of protein-protein surface similarity. The beta propeller structural context is represented in the form of a Hidden Markov Model. The procedure is completely automated.  相似文献   
8.
Mazur  J.  Jernigan  R. L.  Sarai  A. 《Molecular Biology》2003,37(2):240-249
DNA is an extensible molecule, and an extended conformation of DNA is involved in some biological processes. We have examined the effect of elongation stress on the conformational properties of DNA base pairs by conformational analysis. The calculations show that stretching does significantly affect the conformational properties and flexibilities of base pairs. In particular, we have found that the propeller twist in base pairs reverses its sign upon stretching. The energy profile analysis indicates that electrostatic interactions make a major contribution to the stabilization of the positive-propeller-twist configuration in stretched DNA. This stretching also results in a monotonic decrease in the helical twist angle, tending to unwind the double helix. Fluctuations in most variables initially increase upon stretching, because of unstacking of base pairs, but then the fluctuations decrease as DNA is stretched further, owing to the formation of specific interactions between base pairs induced by the positive propeller twist. Thus, the stretching of DNA has particularly significant effects upon DNA flexibility. These changes in both the conformation and flexibility of base pairs probably have a role in functional interactions with proteins.  相似文献   
9.
Forty‐six lectin domains which have homologues among well established eukaryotic and bacterial lectins of known three‐dimensional structure, have been identified through a search of 165 archeal genomes using a multipronged approach involving domain recognition, sequence search and analysis of binding sites. Twenty‐one of them have the 7‐bladed β‐propeller lectin fold while 16 have the β‐trefoil fold and 7 the legume lectin fold. The remainder assumes the C‐type lectin, the β‐prism I and the tachylectin folds. Acceptable models of almost all of them could be generated using the appropriate lectins of known three‐dimensional structure as templates, with binding sites at one or more expected locations. The work represents the first comprehensive bioinformatic study of archeal lectins. The presence of lectins with the same fold in all domains of life indicates their ancient origin well before the divergence of the three branches. Further work is necessary to identify archeal lectins which have no homologues among eukaryotic and bacterial species. Proteins 2016; 84:21–30. © 2015 Wiley Periodicals, Inc.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号