首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   3篇
  2012年   6篇
  2011年   3篇
  2006年   1篇
  2005年   2篇
排序方式: 共有28条查询结果,搜索用时 187 毫秒
1.
2.
MicroRNAs (miRNAs) are small regulatory RNAs that are essential in all studied metazoans. Research has focused on the prediction and identification of novel miRNAs, while little has been done to validate, annotate, and characterize identified miRNAs. Using Illumina sequencing, ~20 million small RNA sequences were obtained from Caenorhabditis elegans. Of the 175 miRNAs listed on the miRBase database, 106 were validated as deriving from a stem-loop precursor with hallmark characteristics of miRNAs. This result suggests that not all sequences identified as miRNAs belong in this category of small RNAs. Our large data set of validated miRNAs facilitated the determination of general sequence and structural characteristics of miRNAs and miRNA precursors. In contrast to previous observations, we did not observe a preference for the 5' nucleotide of the miRNA to be unpaired compared to the 5' nucleotide of the miRNA*, nor a preference for the miRNA to be on either the 5' or 3' arm of the miRNA precursor stem-loop. We observed that steady-state pools of miRNAs have fairly homogeneous termini, especially at their 5' end. Nearly all mature miRNA-miRNA* duplexes had two nucleotide 3' overhangs, and there was a preference for a uracil in the first and ninth position of the mature miRNA. Finally, we observed that specific nucleotides and structural distortions were overrepresented at certain positions adjacent to Drosha and Dicer cleavage sites. Our study offers a comprehensive data set of C. elegans miRNAs and their precursors that significantly decreases the uncertainty associated with the identity of these molecules in existing databases.  相似文献   
3.
4.
miRNA 的生物合成过程   总被引:4,自引:0,他引:4  
MicroRNA (miRNA) 是一类真核生物内源性的小分子单链 RNA ,通常为 18 ~ 25 nt 长,能够通过与靶 mRNA 特异性的碱基配对引起靶 mRNA 的降解或者抑制其翻译,从而对基因进行转录后的表达调控 . 近几年来,在动物细胞和植物组织中,上百种 miRNA 被陆续发现 . 这些小分子调控 RNA 是从 60 ~ 200 nt 的具有发夹状结构的前体中被切割出来而成熟的,在动物细胞中, miRNA 基因的转录初产物 (pri-miRMA) 很快被一种核糖核酸酶Ⅲ Drosha 加工成为 miRNA 前体 (pre-miRNA) ,然后由细胞核转运至细胞质中,经另一种核糖核酸酶Ⅲ Dicer 识别剪切为成熟 miRNA. 对这一过程进行了简要的综述,并且对植物 miRNA 的成熟过程也进行了探讨 . 对 miRNA 的生物合成过程的深入了解,将有助于研究这一类起重要调控作用的 RNA 是如何行使功能的,从而进一步研究其在生长发育及各种疾病中所起的重要作用 .  相似文献   
5.
6.
MicroRNAs (miRNAs) participate in various vitally biological processes via controlling target genes activity and thousands of miRNAs have been identified in many species to date, including 18,698 known animal miRNA in miRBase. However, there are only limited studies reported in rainbow trout (Oncorhynchus mykiss) especially via the computational-based approaches. In present study, we systematically investigated the miRNAs in rainbow trout using a well-developed comparative genome-based homologue search. A total of 196 potential miRNAs, belonging to 124 miRNA families, were identified, most of which were firstly reported in rainbow trout. The length of miRNAs ranged from 17 to 24 nt with an average of 20 nt while the length of their precursors varied from 47 to 152 nt with an average of 85 nt. The identified miRNAs were not evenly distributed in each miRNA family, with only one member per family for a majority, and multiple members were also identified for several families. Nucleotide U was dominant in the pre-miRNAs with a percentage of 30.04%. The rainbow trout pre-miRNAs had relatively high negative minimal folding free energy (MFE) and adjusted MFE (AMFE). Not only the mature miRNAs but their precursor sequences are conserved among the living organisms. About 2466 O. mykiss genes were predicted as potential targets for 189 miRNAs. Gene Ontology (GO) analysis showed that nearly 2093, 2107, and 2081 target genes are involved in cellular component, molecular function, and biological processes respectively. KEGG pathway enrichment analysis illuminated that these miRNAs targets might regulate 105 metabolic pathways, including those of purine metabolism, nitrogen metabolism, and oxidative phosphorylation. This study has provided an update on rainbow trout miRNAs and their targets, which represents a foundation for future studies.  相似文献   
7.
MicroRNAs (miRNAs) are integral to the gene regulatory network. A single miRNA is capable of controlling the expression of hundreds of protein coding genes and modulate a wide spectrum of biological functions, such as proliferation, differentiation, stress responses, DNA repair, cell adhesion, motility, inflammation, cell survival, senescence and apoptosis, all of which are fundamental to tumorigenesis. Overexpression, genetic amplification, and gain-of-function mutation of oncogenic miRNAs (“onco-miRs”) as well as genetic deletion and loss-of-function mutation of tumor suppressor miRNAs (“suppressor-miRs”) are linked to human cancer. In addition to the dysregulation of a specific onco-miR or suppressor-miRs, changes in global miRNA levels resulting from a defective miRNA biogenesis pathway play a role in tumorigenesis. The function of individual onco-miRs and suppressor-miRs and their target genes in cancer has been described in many different articles elsewhere. In this review, we primarily focus on the recent development regarding the dysregulation of the miRNA biogenesis pathway and its contribution to cancer.  相似文献   
8.
9.
The present study aims to investigate small RNA interactions with putative disease response genes in the model grass species Brachypodium distachyon. The fungal pathogen Fusarium culmorum (Fusarium herein) and phytohormone salicylic acid treatment were used to induce the disease response in Brachypodium. Initially, 121 different putative disease response genes were identified using bioinformatic and homology based approaches. Computational prediction was used to identify 33 candidate new miRNA coding sequences, of which 9 were verified by analysis of small RNA sequence libraries. Putative Brachypodium miRNA target sites were identified in the disease response genes, and a subset of which were screened for expression and possible miRNA interactions in 5 different Brachypodium lines infected with Fusarium. An NBS-LRR family gene, 1g34430, was polymorphic among the lines, forming two major genotypes, one of which has its miRNA target sites deleted, resulting in altered gene expression during infection. There were siRNAs putatively involved in regulation of this gene, indicating a role of small RNAs in the B. distachyon disease response.  相似文献   
10.
A mature miRNA may be generated from 5p or 3p arm of a hairpin precursor. The selection may be flexible via “arm switching”. However, accumulating evidences suggest that both arms of many pre-miRNAs can yield mature functional miRNAs. Herein, we attempted to compare the isomiR expression profiles between the two arms through analyzing in-house and published small RNA deep sequencing datasets. Although many miR-#-5p and miR-#-3p have been reported as functional miRNAs, fewer miRNA pairs (11 and 6 pairs are collected in tumor and normal cells, respectively) are simultaneously identified as abundant miRNA species. According to isomiR types and dominant isomiR species, miR-#-5p and miR-#-3p show various isomiR expression profiles as well as diverse enrichment levels. IsomiR profiles of non-dominant arm are not well-conserved in 5′ ends as well as isomiR profiles of dominant arm. If both the miR-#-5p and miR-#-3p are abundantly expressed, their isomiR expression profiles are always stable across different samples. Similar to diverse enrichment levels of miR-#-5p and miR-#-3p, the isomiR expression patterns may also be influenced by the phenomenon of “arm switching”. The diverged isomiR expression profiles further enrich the complexity of multiple isomiRs, and complicate the coding-non-coding RNA regulatory network.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号