首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3598篇
  免费   364篇
  国内免费   669篇
  2024年   6篇
  2023年   75篇
  2022年   71篇
  2021年   111篇
  2020年   156篇
  2019年   144篇
  2018年   131篇
  2017年   127篇
  2016年   144篇
  2015年   181篇
  2014年   175篇
  2013年   238篇
  2012年   168篇
  2011年   172篇
  2010年   116篇
  2009年   190篇
  2008年   180篇
  2007年   230篇
  2006年   188篇
  2005年   185篇
  2004年   172篇
  2003年   166篇
  2002年   141篇
  2001年   130篇
  2000年   120篇
  1999年   94篇
  1998年   81篇
  1997年   75篇
  1996年   66篇
  1995年   66篇
  1994年   57篇
  1993年   48篇
  1992年   52篇
  1991年   49篇
  1990年   44篇
  1989年   34篇
  1988年   35篇
  1987年   25篇
  1986年   31篇
  1985年   33篇
  1984年   19篇
  1983年   14篇
  1982年   21篇
  1981年   17篇
  1980年   14篇
  1979年   6篇
  1978年   9篇
  1977年   5篇
  1976年   9篇
  1975年   4篇
排序方式: 共有4631条查询结果,搜索用时 31 毫秒
1.
1. Population differences in physiological responses are examined in Thorectes lusitanicus, an endemic Iberian dung beetle species, by submitting individuals of different populations to the same experimental and acclimation conditions. 2. An infrared thermography protocol was used, consisting of three assays: start of activity, cold response, and heat response. Individuals of 12 populations were studied and the comparative explanatory capacities of several environmental factors in relation to the observed inter‐population differences were examined. 3. The heating rate from chill coma to the beginning of activity was the variable with the highest discrimination power among the studied populations, accounting for 94% of the observed variance. Regarding the heat response, only six of the 16 thermal variables reached significance (inter‐population differences accounted for 52–74% in these six thermal parameters). 4. From the three considered environmental factors (Mediterranean climate, land cover, and trophic characteristics) only land cover characteristics remain statistically significant, affecting the cold response of individuals. 5. Thorectes lusitanicus is a species characterised by a high diversity of thermotolerance and recovery traits across populations with a low degree of association with broad environmental factors. Finally, it is suggested that the apterous character of this species could be a determinant factor explaining the high diversity of ecophysiological traits related to thermal stress tolerance and the recovery time.  相似文献   
2.
Summary Exclusive selection for yield raises, the harvest index of self-pollinated crops with little or no gain in total bipmass. In addition to selection for yield, it is suggested that efficient breeding for higher yield requires simultaneous selection for yield's three major, genetically controlled physiological components. The following are needed: (1) a superior rate of biomass accumulation. (2) a superior rate of actual yield accumulation in order to acquire a high harvest index, and (3) a time to harvest maturity that is neither shorter nor longer than the duration of the growing season. That duration is provided by the environment, which is the fourth major determinant of yield. Simultaneous selection is required because genetically established interconnections among the three major physiological components cause: (a) a correlation between the harvest index and days to maturity that is usually negative; (b) a correlation between the harvest index and total biomass that is often negative, and (c) a correlation between biomass and days to maturity that is usually positive. All three physiological components and the correlations among them can be quantified by yield system analysis (YSA) of yield trials. An additive main effects and multiplicative interaction (AMMI) statistical analysis can separate and quantify the genotype × environment interaction (G × E) effect on yield and on each physiological component that is caused by each genotype and by the different environment of each yield trial. The use of yield trials to select parents which have the highest rates of accumulation of both biomass and yield, in addition to selecting for the G × E that is specifically adapted to the site can accelerate advance toward the highest potential yield at each geographical site. Higher yield for many sites will raise average regional yield. Higher yield for multiple regions and continents will raise average yield on a world-wide basis. Genetic and physiological bases for lack of indirect selection for biomass from exclusive selection for yield are explained.  相似文献   
3.
4.
At room temperature, the chlorophyll (Chl) a fluorescence induction (FI) kinetics of plants, algae and cyanobacteria go through two maxima, P at ∼ 0.2-1 and M at ∼ 100-500 s, with a minimum S at ∼ 2-10 s in between. Thus, the whole FI kinetic pattern comprises a fast OPS transient (with O denoting origin) and a slower SMT transient (with T denoting terminal state). Here, we examined the phenomenology and the etiology of the SMT transient of the phycobilisome (PBS)-containing cyanobacterium Synechococcus sp PCC 7942 by modifying PBS → Photosystem (PS) II excitation transfer indirectly, either by blocking or by maximizing the PBS → PS I excitation transfer. Blocking the PBS → PS I excitation transfer route with N-ethyl-maleimide [NEM; A. N. Glazer, Y. Gindt, C. F. Chan, and K.Sauer, Photosynth. Research 40 (1994) 167-173] increases both the PBS excitation share of PS II and Chl a fluorescence. Maximizing it, on the other hand, by suspending cyanobactrial cells in hyper-osmotic media [G. C. Papageorgiou, A. Alygizaki-Zorba, Biochim. Biophys. Acta 1335 (1997) 1-4] diminishes both the PBS excitation share of PS II and Chl a fluorescence. Here, we show for the first time that, in either case, the slow SMT transient of FI disappears and is replaced by continuous P → T fluorescence decay, reminiscent of the typical P → T fluorescence decay of higher plants and algae. A similar P → T decay was also displayed by DCMU-treated Synechococcus cells at 2 °C. To interpret this phenomenology, we assume that after dark adaptation cyanobacteria exist in a low fluorescence state (state 2) and transit to a high fluorescence state (state 1) when, upon light acclimation, PS I is forced to run faster than PS II. In these organisms, a state 2 → 1 fluorescence increase plus electron transport-dependent dequenching processes dominate the SM rise and maximal fluorescence output is at M which lies above the P maximum of the fast FI transient. In contrast, dark-adapted plants and algae exist in state 1 and upon illumination they display an extended P → T decay that sometimes is interrupted by a shallow SMT transient, with M below P. This decay is dominated by a state 1 → 2 fluorescence lowering, as well as by electron transport-dependent quenching processes. When the regulation of the PBS → PS I electronic excitation transfer is eliminated (as for example in hyper-osmotic suspensions, after NEM treatment and at low temperature), the FI pattern of Synechococcus becomes plant-like.  相似文献   
5.
6.
Plant tropisms—their directional movement in response to stimuli—are a fundamental concept in plant science and excite students because they are the observable signs of life in plants. Unfortunately, the precollege teaching literature is full of tropism misconceptions. An inexpensive clock clinostat is invaluable for student gravitropism and phototropism experiments. It is also valuable for space biology experiments because a clinostat can mimic the microgravity of space.  相似文献   
7.
Markovska  Y.K.  Dimitrov  D.S. 《Photosynthetica》2001,39(2):191-195
For the first time the expression of C3 and CAM in the leaves of different age of Marrubium frivaldszkyanum Boiss, is reported. With increasing leaf age a typical C3 photosynthesis pattern and high transpiration rate were found. In older leaves a shift to CAM occurred and the 24-h transpiration water loss decreased. A correlation was established between leaf area and accumulation of malate. Water loss at early stages of leaf expansion may be connected with the shift to CAM and the water economy of the whole plant.  相似文献   
8.
This study aims to explore the potential mechanisms of Xinnaokang in atherosclerosis treatment. Firstly, the active components of Xinnaokang were analysed by HPLC, which contains ginsenoside Rg1, puerarin, tanshinone, notoginsenoside R1, ammonium glycyrrhizate and glycyrrhizin. Network pharmacology analysis showed there were 145 common targets of Xinnaokang, including the chemical stress, lipid metabolite, lipopolysaccharide, molecules of bacterial origin, nuclear receptor and fluid shear stress pathways. Then, the animal experiment showed that Xinnaokang reduced the body weight and blood lipid levels of atherosclerotic mice. Vascular plaque formation was increased in atherosclerotic mice, which was markedly reversed by Xinnaokang. In addition, Xinnaokang reduced CAV-1 expression and increased ABCA1, SREBP-1 and LXR expressions in the vasculature. Xinnaokang promoted SREBP-2 and LDLR expressions in the liver but decreased IDOL and PCSK9 expressions, indicating that Xinnaokang regulated lipid transport-related protein expression. Cecal microbiota diversity was reduced in atherosclerotic mice but increased after Xinnaokang treatment. Xinnaokang treatment also improved gut microbiota communities by enriching Actinobacteria, Bifidobacteriales and Bifidobacteriaceae abundances. Metabolic profile showed that Xinnaokang significantly reduced homogentisate, phenylacetylglycine, alanine and methionine expressions in the liver of atherosclerotic mice. Xinnaokang effectively alleviated atherosclerosis, and this effect might be linked with the altered features of the liver metabolite profiles and cecal microbiota.  相似文献   
9.
Abstract

In order to test the hypothesis that arthropod-induced neoplastic formations on trees affect biochemical characteristics of both the newly formed galls and host plant tissues, biochemical characteristics with a possible adaptive role were determined in nine gall-former–host tree combinations. Photosynthetic pigments, extractable protein content, and oxidative enzyme activities were determined in gall tissues, leaf tissues of galled leaves, and leaves on ungalled tree branches. Neoplastic tissues were characterized by a low content of photosynthetic pigments, decreased chlorophyll a/b ratio, lower extractable protein content, and decreased activities of peroxidase and polyphenol oxidase as compared with ungalled host leaf tissues. In galled leaves or in leaves adjacent to galls, increased level of peroxidase activity was found. In several gall-inducer–host plant combinations, galled host plant tissues contained increased activity of polyphenol oxidase as well. The presented data reflect long-term systemic effects of neoplastic formation on host tree physiology suggesting that gall inducers affect potential adaptive responses of host plants.  相似文献   
10.
Abstract

Cultures of filamentous fungi that secrete significant amounts of exopolysaccharides are among the most difficult of fermentation fluids, presenting difficulties in the areas of aeration, agitation, mixing, and control that may in turn impact the physiology of the microorganism in an undesirable manner. The fungus Sclerotium glucanicum, which produces a potentially useful exopolysaccharide known as scleroglucan, illustrates many such difficulties. This review discusses in detail the range of physiological studies on the producing microorganism itself, including those concerning formation of “undesirable” byproducts, principally oxalate, but also, under certain conditions, other TCA cycle acids. In addition, the bioreactor technology in use for production of this type of biopolymer is discussed in relation to the difficulties such fluid types present. The potential of pneumatically agitated reactors for such production is evaluated, and the lack of fundamental studies on such reactors and on the hydrodynamics and mixing behavior of such complex fluids is pointed out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号