首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   21篇
  国内免费   2篇
  2023年   2篇
  2020年   16篇
  2019年   15篇
  2018年   8篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
Recently, two‐dimensional (2D) structure on three‐dimensional (3D) perovskites (graded 2D/3D) has been reported to be effective in significantly improving both efficiency and stability. However, the electrical properties of the 2D structure as a passivation layer on the 3D perovskite thin film and resistance to the penetration of moisture may vary depending on the length of the alkyl chain. In addition, the surface defects of the 2D itself on the 3D layer may also be affected by the correlation between the 2D structure and the hole conductive material. Therefore, systematic interfacial study with the alkyl chain length of long‐chained alkylammonium iodide forming a 2D structure is necessary. Herein, the 2D interfacial layers formed are compared with butylammonium iodide (BAI), octylammonium iodide (OAI), and dodecylammonium iodide (DAI) iodide on a 3D (FAPbI3)0.95(MAPbBr3)0.05 perovskite thin film in terms of the PCE and humidity stability. As the length of the alkyl chain increased from BA to OA to DA, the electron‐blocking ability and humidity resistance increase significantly, but the difference between OA and DA is not large. The PSC post‐treated with OAI has slightly higher PCE than those treated with BAI and DAI, achieving a certified stabilized efficiency of 22.9%.  相似文献   
2.
With power conversion efficiencies now exceeding 25%, hybrid perovskite solar cells require deeper understanding of defects and processing to further approach the Shockley‐Queisser limit. One approach for processing enhancement and defect reduction involves additive engineering—, e.g., addition of MASCN (MA = methylammonium) and excess PbI2 have been shown to modify film grain structure and improve performance. However, the underlying impact of these additives on transport and recombination properties remains to be fully elucidated. In this study, a newly developed carrier‐resolved photo‐Hall (CRPH) characterization technique is used that gives access to both majority and minority carrier properties within the same sample and over a wide range of illumination conditions. CRPH measurements on n‐type MAPbI3 films reveal an order of magnitude increase in carrier recombination lifetime and electron density for 5% excess PbI2 added to the precursor solution, with little change noted in electron and hole mobility values. Grain size variation (120–2100 nm) and MASCN addition induce no significant change in carrier‐related parameters considered, highlighting the benign nature of the grain boundaries and that excess PbI2 must predominantly passivate bulk defects rather than defects situated at grain boundaries. This study offers a unique picture of additive impact on MAPbI3 optoelectronic properties as elucidated by the new CRPH approach.  相似文献   
3.
Intensive studies of an advanced energy material are reported and lithium polyacrylate (LiPAA) is proven to be a surprisingly unique, multifunctional binder for high‐voltage Li‐ion batteries. The absence of effective passivation at the interface of high‐voltage cathodes in Li‐ion batteries may negatively affect their electrochemical performance, due to detrimental phenomena such as electrolyte solution oxidation and dissolution of transition metal cations. A strategy is introduced to build a stable cathode–electrolyte solution interphase for LiNi0.5Mn1.5O4 (LNMO) spinel high‐voltage cathodes during the electrode fabrication process by simply using LiPAA as the cathode binder. LiPAA is a superb binder due to unique adhesion, cohesion, and wetting properties. It forms a uniform thin passivating film on LNMO and conducting carbon particles in composite cathodes and also compensates Li‐ion loss in full Li‐ion batteries by acting as an extra Li source. It is shown that these positive roles of LiPAA lead to a significant improvement in the electrochemical performance (e.g., cycle life, cell impedance, and rate capability) of LNMO/graphite battery prototypes, compared with that obtained using traditional polyvinylidene fluoride (PVdF) binder for LNMO cathodes. In addition, replacing PVdF with LiPAA binder for LNMO cathodes offers better adhesion, lower cost, and clear environmental advantages.  相似文献   
4.
Thin‐film solar cells are made by vapor deposition of Earth‐abundant materials: tin, zinc, oxygen and sulfur. These solar cells had previously achieved an efficiency of about 2%, less than 1/10 of their theoretical potential. Loss mechanisms are systematically investigated and mitigated in solar cells based on p‐type tin monosulfide, SnS, absorber layers combined with n‐type zinc oxysulfide, Zn(O,S) layers that selectively transmit electrons, but block holes. Recombination at grain boundaries is reduced by annealing the SnS films in H2S to form larger grains with fewer grain boundaries. Recombination near the p‐SnS/n‐Zn(O,S) junction is reduced by inserting a few monolayers of SnO2 between these layers. Recombination at the junction is also reduced by adjusting the conduction band offset by tuning the composition of the Zn(O,S), and by reducing its free electron concentration with nitrogen doping. The resulting cells have an efficiency over 4.4%, which is more than twice as large as the highest efficiency obtained previously by solar cells using SnS absorber layers.  相似文献   
5.
6.
Defect state passivation and conductivity of materials are always in opposition; thus, it is unlikely for one material to possess both excellent carrier transport and defect state passivation simultaneously. As a result, the use of partial passivation and local contact strategies are required for silicon solar cells, which leads to fabrication processes with technical complexities. Thus, one material that possesses both a good passivation and conductivity is highly desirable in silicon photovoltaic (PV) cells. In this work, a passivation‐conductivity phase‐like diagram is presented and a conductive‐passivating‐carrier‐selective contact is achieved using PEDOT:Nafion composite thin films. A power conversion efficiency of 18.8% is reported for an industrial multicrystalline silicon solar cell with a back PEDOT:Nafion contact, demonstrating a solution‐processed organic passivating contact concept. This concept has the potential advantages of omitting the use of conventional dielectric passivation materials deposited by costly high‐vacuum equipment, energy‐intensive high‐temperature processes, and complex laser opening steps. This work also contributes an effective back‐surface field scheme and a new hole‐selective contact for p‐type and n‐type silicon solar cells, respectively, both for research purposes and as a low‐cost surface engineering strategy for future Si‐based PV technologies.  相似文献   
7.
Organic–inorganic halide perovskites are efficient absorbers for solar cells. Nevertheless, the trap states at the surfaces and grain boundaries are a detrimental factor compromising the device performance. Here, an organic dye (AQ310) is employed as passivator to reduce the trap states of the perovskites and promote better stability. The results demonstrate that the trap states of perovskite are minimized by the presence of AQ310's ?COOH group and the formation of coordination with under‐coordinated Pb2+ ions. The resulting carrier recombination time is prolonged and verified by the photoluminescence and open‐circuit voltage decay measurements. Consequently, the best average power conversion efficiency (PCE) of 19.43% is achieved for the perovskite solar cell (PSC) with AQ310 passivation, as compared with a low average PCE of 17.98% for the PSC without AQ310 passivation.  相似文献   
8.
Passivation of electronic defects is an effective strategy to boost the performance and operational stability of perovskite solar cells (PSCs). Identifying molecular materials that achieve this purpose is a key target of current research efforts. Here, adamantane (AD) and 1‐adamantylamine (ADA) are introduced as molecular modulators to abate electronic defects present within the bulk and at the perovskite–hole conductor interface. To this effect, the modulator is added either into the antisolvent (AS) to precipitate it together with the perovskite (AS method) or they are spin coated (SC) onto its surface (SC method). Time‐resolved photoluminescence measurements show substantially longer lifetimes for perovskite films treated with AD and ADA compared to the reference sample. In line with this observation, it is found that the presence of AD and ADA molecules at the interface between the perovskite film and the hole conductor increases all photovoltaic metrics, in particular the open circuit photovoltage (V oc) as well as the operational stability of the PSC.  相似文献   
9.
To prevent the interfacial charge recombination between injected holes in the valence band and the redox mediator in the electrolyte in p‐type dye sensitized solar cells (p‐DSSC) the passivation of the recombination sites by organic insulator chenodeoxycholic acid (CDCA) layer is critically investigated in this study. Rather than classical coating of the semiconductor's surface by simultaneous co‐adsorption of CDCA during the dyeing step, two other methods are investigated. The first consists in dissolving CDCA in the electrolyte, while the second consists in spin coating an ethanol solution of CDCA onto the already dyed photocathode. In this study, different sensitizers, electrolytes, and p‐SCs, (NiO, CuGaO2) are explored. Analysis of the current/voltage curves and electrochemical impedance spectroscopy provides evidence that the role of the CDCA layer is to create a physical barrier to prevent the approach of the redox mediator from the NiO surface and consequently raise the open circuit voltage (Voc). The important finding of this study is the demonstration that the Voc in p‐DSSC is heavily limited by interfacial charge recombination and that higher Voc values much above 100 mV and as high as 500 mV can be attained with conventional materials (NiO) if this deleterious side reaction can be suppressed or diminished.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号