首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4155篇
  免费   181篇
  国内免费   224篇
  2023年   29篇
  2022年   24篇
  2021年   47篇
  2020年   70篇
  2019年   92篇
  2018年   56篇
  2017年   86篇
  2016年   79篇
  2015年   75篇
  2014年   145篇
  2013年   197篇
  2012年   107篇
  2011年   192篇
  2010年   124篇
  2009年   172篇
  2008年   197篇
  2007年   179篇
  2006年   172篇
  2005年   147篇
  2004年   120篇
  2003年   129篇
  2002年   122篇
  2001年   102篇
  2000年   115篇
  1999年   91篇
  1998年   82篇
  1997年   82篇
  1996年   89篇
  1995年   87篇
  1994年   87篇
  1993年   97篇
  1992年   94篇
  1991年   85篇
  1990年   87篇
  1989年   72篇
  1988年   65篇
  1987年   62篇
  1986年   56篇
  1985年   78篇
  1984年   90篇
  1983年   86篇
  1982年   93篇
  1981年   81篇
  1980年   63篇
  1979年   50篇
  1978年   18篇
  1977年   24篇
  1976年   24篇
  1975年   12篇
  1974年   14篇
排序方式: 共有4560条查询结果,搜索用时 15 毫秒
1.
The mammalian flagellum is a specific type of motile cilium required for sperm motility and male fertility. Effective flagellar movement is dependent on axonemal function, which in turn relies on proper ion homeostasis within the flagellar compartment. This ion homeostasis is maintained by the concerted function of ion channels and transporters that initiate signal transduction pathways resulting in motility changes. Advances in electrophysiology and super-resolution microscopy have helped to identify and characterize new regulatory modalities of the mammalian flagellum. Here, we discuss what is currently known about the regulation of flagellar ion channels and transporters that maintain sodium, potassium, calcium, and proton homeostasis. Identification of new regulatory elements and their specific roles in sperm motility is imperative for improving diagnostics of male infertility.  相似文献   
2.
Nitrate induced iron deficiency chlorosis in Juncus acutiflorus   总被引:1,自引:0,他引:1  
Chlorosis caused by iron deficiency is commonly associated with high bicarbonate levels in the soil. However, in rare cases such chlorosis has been observed in soils with high nitrate levels. In a dutch rich-fen, chlorosis has been noted in stands of Juncus acutiflorus at locations where groundwater containing high levels of nitrate reached the surface. Experiments revealed that the chlorosis could be attributed to iron deficiency although iron levels in the shoots were well above the known physiological threshold values for iron deficiency. It is postulated that increased nitrate assimilation leads to an increased apoplastic pH and to a concomitant immobilisation of iron and/or lower iron (III) reduction. Moreover free amino acid levels were markedly higher in the iron deficient plants in the field. It was found, however, that the percentage of nitrogen present as free amino acids was not influenced directly by low iron levels but mainly by the C/N ratios in the shoots. Nowadays, nitrate concentrations in ground water as high 1000 µM are no longer an exception in the Netherlands. We propose that strongly increased nitrate inputs may cause iron stress in natural vegetations, especially in wet habitats.  相似文献   
3.
Iridoid glycosides are plant defence compounds that are deterrent and/or toxic for unadapted herbivores but are readily sequestered by dietary specialists of different insect orders. Hydrolysis of iridoid glycosides by β‐glucosidase leads to protein denaturation. Insect digestive β‐glucosidases thus have the potential to mediate plant–insect interactions. In the present study, mechanisms associated with iridoid glycoside tolerance are investigated in two closely‐related leaf beetle species (Coleoptera: Chrysomelidae) that feed on iridoid glycoside containing host plants. The polyphagous Longitarsus luridus Scopoli does not sequester iridoid glycosides, whereas the specialist Longitarsus tabidus Fabricius sequesters these compounds from its host plants. To study whether the biochemical properties of their β‐glucosidases correspond to the differences in feeding specialization, the number of β‐glucosidase isoforms and their kinetic properties are compared between the two beetle species. To examine the impact of iridoid glycosides on the β‐glucosidase activity of the generalist, L. luridus beetles are kept on host plants with or without iridoid glycosides. Furthermore, β‐glucosidase activities of both species are examined using an artificial β‐glucosidase substrate and the iridoid glycoside aucubin present in their host plants. Both species have one or two β‐glucosidases with different substrate affinities. Interestingly, host plant use does not influence the specific β‐glucosidase activities of the generalist. Both species hydrolyse aucubin with a much lower affinity than the standard substrate. The neutral pH reduces the β‐glucosidase activity of the specialist beetles by approximately 60% relative to its pH optimum. These low rates of aucubin hydrolysis suggest that the ability to sequester iridoid glycosides has evolved as a key to potentially preventing iridoid glycoside hydrolysis by plant‐derived β‐glucosidases.  相似文献   
4.
Monoclonal antibodies against chick embryonic beta-galactoside-binding lectin were obtained. One of the monoclonal antibodies was ineffective in Western blotting and seemed to be unable to bind the SDS-denatured lectin. When the native lectin was dotted on a nitrocellulose filter and subjected to denaturation by treatment with SDS, urea or heat, binding of this antibody no longer occurred, though other monoclonal antibodies bound normally. This antibody seems to have been raised against an epitope which is destroyed upon denaturation.  相似文献   
5.
We present a single-step procedure for the specific mass labeling of unblocked protein N termini. We show that the dye fluorescamine, which is commonly assumed to require mildly alkaline conditions for undergoing a nonspecific reaction with α- and ε-amino groups associated with amino acids, in fact shows a specific reaction only with α-amino groups present at protein N termini when mildly acidic conditions are used. We use this finding to label, identify, and sequence the trypsinolysis-derived N-terminal peptide of lysozyme, using only mass spectrometry, to illustrate how this method could be used with other proteins.  相似文献   
6.
7.
Anti PSA monoclonal antibodies for diagnostic use were produced in an in vitro system. After purification using Protein G affinity chromatography a percentage of about 10% of antibody aggregates remained. The use of monoclonal antibodies containing aggregates as a capture antibody in a diagnostic kit reduces the performance of the test making it often unacceptable. The aggregates could be eliminated using gel filtration chromatography but, in that way, the final recovery of the whole production process was only about 50%. Aggregation is favoured when the working pH is near to the isoelectric point of the antibody. We varied the culture medium composition, modifying pH and osmolarity. We tested different values of pH and osmolarity: 7.1, 7.5, 8.0, 8.5 for pH, and 300, 340, 367, 395 mOsm/kg H2O for osmolarity. By modification of the cell culture medium we obtained a significant decrease of monoclonal antibody aggregates in the production cycle. In this way we achieved higher recovery rate and could avoid gel filtration polishing step. The experiments were performed in two stages: first in culture flasks changing one parameter in each experiment, and then in spinner bottle using the best conditions obtained in the first stage. During scale up we used the modifications achieved from the experiment showed in this paper in our production by hollow fibre bioreactor with positive results.  相似文献   
8.
Summary In crassulacean acid metabolism (CAM) large amounts of malic acid are redistributed between vacuole and cytoplasm in the course of night-to-day transitions. The corresponding changes of the cytoplasmic pH (pHcyt) were monitored in mesophyll protoplasts from the CAM plantKalanchoe daigremontiana Hamet et Perrier by ratiometric fluorimetry with the fluorescent dye 2′,7′-bis-(2-carboxyethyl)-5-(and-6-)carboxyfluorescein as a pHcyt indicator. At the beginning of the light phase, pHcyt was slightly alkaline (about 7.5). It dropped during midday by about 0.3 pH units before recovering again in the late-day-to-early-dark phase. In the physiological context the variation in pHcyt may be a component of CAM regulation. Due to its pH sensitivity, phosphoenolpyruvate carboxylase appears as a likely target enzyme. From monitoring ΔpHcyt in response to loading the cytoplasm with the weak acid salt K-acetate a cytoplasmic H+-buffer capacity in the order of 65 mM H+ per pH unit was estimated at a pHcyt of about 7.5. With this value, an acid load of the cytoplasm by about 10 mM malic acid can be estimated as the cause of the observed drop in pHcyt. A diurnal oscillation in pHcyt and a quantitatively similar cytoplasmic malic acid is predicted from an established mathematical model which allows simulation of the CAM dynamics. The similarity of model predictions and experimental data supports the view put forward in this model that a phase transition of the tonoplast is an essential functional element in CAM dynamics.  相似文献   
9.
In the present study, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis were transferred into Luria–Bertani medium without NaCl (LBWS) and adjusted to various pHs (4, 5, 6 and 7) with lactic acid containing 0·75, 5, 10 and 30% NaCl, and stored at 25°C until the bacterial populations reached below detectable levels on tryptic soy agar (TSA). Although Ecoli O157:H7 and S. Enteritidis did not grow on TSA when incubated in LBWS with 30% NaCl for 35 and 7 days, more than 60 and 70% of the bacterial cells were shown to be viable via fluorescent staining with SYTO9 and propidium iodide (PI), respectively, suggesting that a number of cells could be induced into the viable but nonculturable (VBNC) state. These bacteria that were induced into a VBNC state were transferred to a newly prepared tryptic soy broth (TSB) and then incubated at 37°C for several days. After more than 7 days, Ecoli O157:H7 and S. Enteritidis regained their culturability. We, therefore, suggest that Ecoli O157:H7 and S. Enteritidis entered the VBNC state under the adverse condition of higher salt concentrations and were revived when these conditions were reversed.  相似文献   
10.
This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non‐invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH‐sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH‐sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole‐root tissues of A. thaliana is reported. The utility of pH‐sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号