首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  国内免费   3篇
  完全免费   37篇
  2019年   1篇
  2018年   9篇
  2017年   9篇
  2016年   5篇
  2015年   9篇
  2014年   10篇
  2013年   9篇
  2012年   8篇
  2011年   20篇
  2010年   11篇
  2009年   34篇
  2008年   21篇
  2007年   34篇
  2006年   20篇
  2005年   17篇
  2004年   17篇
  2003年   27篇
  2002年   14篇
  2001年   10篇
  2000年   10篇
  1999年   2篇
  1998年   6篇
  1997年   13篇
  1996年   5篇
  1995年   8篇
  1994年   8篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
排序方式: 共有349条查询结果,搜索用时 218 毫秒
1.
植物中活性氧的产生及清除机制   总被引:131,自引:1,他引:130       下载免费PDF全文
环境胁迫使植物细胞中积累大量的活性氧,从而导致蛋白质、膜脂、DNA及其它细胞组分的严重损伤。植物体内有效清除活性氧的保护机制分为酶促和非酶促两类。酶促脱毒系统包括超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPX)等。非酶类抗氧化剂包括抗坏血酸、谷胱甘肽、甘露醇和类黄酮。利用基因工程策略增加这些物质在植物体内的含量,从而获得耐逆转基因植物已取得一定的进展。  相似文献
2.
一氧化氮对盐胁迫下小麦幼苗根生长和氧化损伤的影响   总被引:45,自引:2,他引:43  
0.05和0.10 mmol/L一氧化氮(NO)供体硝普钠(sodium mtropmsside,SNP)处理明显减轻NaCl浓度为150 mmo1/L左右的盐胁迫对小麦幼苗根生长的抑制效应,其中0.05mmol/L的SNP效果最明显;0.30mmol/L以上的SNP处理对根抑制无明显缓解作用;当NaCl浓度大于300 mmol/L时,各种浓度的SNP均不能减轻盐胁迫对根生长的抑制.以N O清除剂血红蛋白(hemoglobin,Hb)以及NOx-,K3Fe(CN)6等为对照,观察到0.05 mmol/L的SNP能不同程度地提高150mmo/L盐胁迫下小麦幼苗根尖细胞中超氧化物歧化酶(SOD)、过氧化物酶(POD)和抗坏血酸过氧化物酶(ascorbateperoxidase,APX)活性,明显降低MDA、H2O2和O2-.的积累,阻断盐胁迫诱导的根尖细胞DNA片段化,表明NO能有效缓解盐胁迫引起的小麦幼苗根尖细胞的氧化损伤.  相似文献
3.
超氧化物歧化酶(SOD)研究进展   总被引:42,自引:0,他引:42       下载免费PDF全文
环境胁迫使植物细胞中积累大量的活性氧,从而导致蛋白质、膜脂、DNA及其它细胞组分的严重损伤。植物体内有效清除活性氧的酶类包括超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)等,其中研究最深入的是SOD。利用基因工程策略增加这些物质在植物体内的含量,从而获得抗逆转基因植株。  相似文献
4.
Drought induces oxidative stress in pea plants   总被引:34,自引:4,他引:30  
Pea (Pisum sativum L. cv. Frilene) plants subjected to drought (leaf water potential of -1.3 MPa) showed major reductions in photosynthesis (78), transpiration (83), and glycolate oxidase (EC 1.1.3.1) activity (44), and minor reductions (18) in the contents of chlorophyll a, carotenoids, and soluble protein. Water stress also led to pronounced decreases (72–85) in the activities of catalase (EC 1.11.1.6), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), but resulted in the increase (32–42) of non-specific peroxidase (EC 1.11.1.7) and superoxide dismutase (EC 1.15.1.1). Ascorbate peroxidase (EC 1.11.1.11) and monodehydroascorbate reductase (EC 1.6.5.4) activities decreased only by 15 and the two enzymes acted in a cyclic manner to remove H2O2, which did not accumulate in stressed leaves. Drought had no effect on the levels of ascorbate and oxidized glutathione in leaves, but caused a 25 decrease in the content of reduced glutathione and a 67 increase in that of vitamin E. In leaves, average concentrations of catalytic Fe, i.e. Fe capable of catalyzing free-radical generation by redox cycling, were estimated as 0.7 to 7 M (well-watered plants, depending on age) and 16 M (water-stressed plants); those of catalytic Cu were 4.5 M and 18 M, respectively. Oxidation of lipids and proteins from leaves was enhanced two- to threefold under stress conditions and both processes were highly correlated. Fenton systems composed of the purported concentrations of ascorbate, H2O2, and catalytic metal ions in leaves produced hydroxyl radicals, peroxidized membrane lipids, and oxidized leaf proteins. It is proposed that augmented levels and decompartmentation of catalytic metals occurring during water stress are responsible for the oxidative damage observed in vivo.Abbreviations and Symbol ASC ascorbate - DW dry weight - DHA dehydroascorbate - GSH reduced glutathione - GSSG oxidized glutathione - MDHA monodehydroascorbate (ascorbate free radical) - SOD Superoxide dismutase - wa water potential We thank Dr. R. Picorel (E.E. de Aula Dei, CSIC) for allowing us access to HPLC equipment. J.F.M., 1.1., and S.F. were the recipients of predoctoral fellowships from the Comunidades Autónomas de Aragon, Pais Vasco, and Navarra, respectively. R.V.K. thanks the U.S. Department of Agriculture (grant 91-37305-6705) for travel support. This work was financed by grants from the Comisión Interministerial de Ciencia y Tecnología (AGR-91-0857-C02 to P.A. and M.B.) and the Dirección General de Investigación Científica y Técnica (PB92-0058 to M.B) of Spain.  相似文献
5.
Abstract: Oxidative damage has been implicated in the pathology of Parkinson's disease (PD), e.g., rises in the level of the DNA damage product, 8-hydroxy-2'-deoxyguanosine, have been reported. However, many other products result from oxidative DNA damage, and the pattern of products can be diagnostic of the oxidizing species. Gas chromatography/mass spectrometry was used to examine products of oxidation and deamination of all four DNA bases in control and PD brains. Products were detected in all brain regions examined, both normal and PD. Analysis showed that levels of 8-hydroxyguanine (8-OHG) tended to be elevated and levels of 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FAPy guanine) tended to be decreased in PD. The most striking difference was a rise in 8-OHG in PD substantia nigra ( p = 0.0002); rises in other base oxidation/deamination products were not evident, showing that elevation in 8-OHG is unlikely to be due to peroxynitrite (ONOO) or hydroxyl radicals (OH), or to be a prooxidant effect of treatment with l -Dopa. However, some or all of the rise in 8-OHG could be due to a change in 8-OHG/FAPy guanine ratios rather than to an increase in total oxidative guanine damage.  相似文献
6.
7.
Abstract: Some cases of autosomal dominant familial amyotrophic lateral sclerosis (FALS) are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1), suggesting that oxidative damage may play a role in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined markers of oxidative damage to protein, lipids, and DNA in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Pick's disease, progressive supranuclear palsy, diffuse Lewy body disease). Protein carbonyl and nuclear DNA 8-hydroxy-2'-deoxyguanosine (OH8dG) levels were increased in SALS motor cortex but not in FALS patients. Malondialdehyde levels showed no significant changes. Immunohistochemical studies showed increased neuronal staining for hemeoxygenase-1, malondialdehyde-modified protein, and OH8dG in both SALS and FALS spinal cord. These studies therefore provide further evidence that oxidative damage may play a role in the pathogenesis of neuronal degeneration in both SALS and FALS.  相似文献
8.
Roles of abscisic acid (ABA) in water stress-induced oxidative stress were investigated in leaves of maize ( Zea mays L.) seedlings exposed to water stress induced by polyethylene glycol (PEG 6000). Treatment with PEG at -0.7 MPa for 12 and 24 h led to a reduction in leaf relative water content (RWC) by 7.8 and 14.1%, respectively. Duration of the osmotic treatments is considered as mild and moderate water stress. The mild water stress caused significant increases in the generation of superoxide radical ( O 2 - ) and hydrogen peroxide (H 2 O 2 ), the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) and the contents of ascorbate (ASC), reduced glutathione (GSH). The moderate water stress failed to further enhance the capacity of antioxidant defense systems, as compared to the mild water stress. The contents of catalytic Fe, which is critical for H 2 O 2 -dependent hydroxyl radical ( •OH) production, and the oxidized forms of ascorbate and glutathione pools, dehydroascorbate (DHA) and oxidized glutathione (GSSG), markedly increased, a significant oxidative damage to lipids and proteins took place under the moderate water stress. Pretreatment with ABA caused an obvious reduction in the content of catalytic Fe and significant increases in the activities of antioxidant enzymes and the contents of non-enzymatic antioxidants, and then significantly reduced the contents of DHA and GSSG and the degrees of oxidative damage in leaves exposed to the moderate water stress. Pretreatment with an ABA biosynthesis inhibitor, tungstate, significantly suppressed the accumulation of ABA induced by water stress, reduced the enhancement in the capacity of antioxidant defense systems, and resulted in an increase in catalytic Fe, DHA and GSSG, and oxidative damage in the water-stressed leaves. These effects were completely prevented by addition of ABA, which raised the internal ABA content. Our data indicate that ABA plays an important role in water stress-induced antioxidant defense against oxidative stress.  相似文献
9.
冬小麦旗叶旱促衰老过程中氧化伤害与抗氧化系统的尖   总被引:19,自引:4,他引:15  
研究了土壤缓慢干旱胁迫下抗旱性不同的2个冬小麦品种旗叶老过程中氧化丰以及酶促与硕果发现,在抗旱性强的品种中,冬泪科叶片旱个衰老与膜脂过氧化程度之间并无直接的联系。超氧化物歧化酶(SOD)活性在不同抗旱性品种中均呈现持志下降的趋势,但在生强的品种中下降幅度较小,过氧化氢酶(CAT)活性在胁迫初期基本不变,至中后期明显下降,且在抗旱性弱的品种中下降幅度较大,抗坏血酸过氧化物酶(AP)和谷胱甘肽还原酶(  相似文献
10.
Oxidative DNA damage has been implicated in mutagenesis, carcinogenesis and aging. Endogenous cellular processes such as aerobic metabolism generate reactive oxygen species (ROS) that interact with DNA to form dozens of DNA lesions. If unrepaired, these lesions can exert a number of deleterious effects including the induction of mutations. In an effort to understand the genetic consequences of cellular oxidative damage, many laboratories have determined the patterns of mutations generated by the interaction of ROS with DNA. Compilation of these mutational spectra has revealed that GC → AT transitions and GC → TA transversions are the most commonly observed mutations resulting from oxidative damage to DNA. Since mutational spectra convey only the end result of a complex cascade of events, which includes formation of multiple adducts, repair processing, and polymerase errors, it is difficult if not impossible to asses the mutational specificity of individual DNA lesions directly from these spectra. This problem is especially complicated in the case of oxidative DNA damage owing to the multiplicity of lesions formed by a single damaging agent. The task of assigning specific features of mutational spectra to individual DNA lesions has been made possible with the advent of a technology to analyze the mutational properties of single defined adducts, in vitro and in vivo. At the same time, parallel progress in the discovery and cloning of repair enzymes has advanced understanding of the biochemical mechanisms by which cells excise DNA damage. This combination of tools has brought our understanding of DNA lesions to a new level of sophistication. In this review, we summarize the known properties of individual oxidative lesions in terms of their structure, mutagenicity and repairability.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号